
Combining Methods in AI for Imperfect Information Games:

An Autonomous Agent for Six-Player Poker

Submitted by Spencer Eick to the faculty of University of London, Goldsmiths in partial fulfilment of the

requirements for the degree of BSc Computer Science.

Abstract

For the past generation, poker has been a popular testbed for AI research involving

imperfect information. While significant progress has been made in recent years, the

amount of computation time required for state-of-the-art methods makes them

challenging to implement in a competitive online real-money environment where an

agent can arguably be best evaluated. Here a simpler time-efficient alternative

approach for six-player no-limit holdem poker is presented, borrowing from both

newer and older methods. Also discussed is the topic of how the game state may be

read from external software such as a commercial poker client. An evaluation of the

application’s critical components and overall performance is then presented.

1 Introduction

Many real-world problems resemble games of imperfect information. Consider, for example, a negotiation

involving multiple parties where each party is attempting to exert leverage and persuade the other parties to

compromise. The objective of any game, negotiation included, is to behave optimally with the goal of

maximising one’s utility. However, factors such as what the other parties know or do not know, as well as

personality traits which may or may not be known, are often of great importance when determining an

optimal strategy for negotiation. A game such as this can be very complicated and difficult to model indeed.

That is why many researchers throughout the years have focused their attention on the development of

autonomous agents that can play games such as chess, and more recently video games and poker, as a means

of benchmarking the success of artificial intelligence and gaining new insight into how to extend the

techniques to real-world applications including elections, security interactions, and financial markets.

Poker itself has been compared to “policy decisions in commercial enterprises and in political campaigns”

[1]. Aside from imperfect information, there are several aspects to the game that make it an interesting topic

of research, such as opponent modelling and management of risk. There is also a significant deceptive

element to the game in the form of wagering with a weak hand (i.e. bluffing) or passing one’s turn (i.e.

checking) with a strong hand. Early approaches focused on modelling opponents along with computing best-

response actions through formulae determined by those with expert domain knowledge of the game [3, 4]. In

the past decade however there has been a divergence from exploitation-based opponent modelling to game

theoretic approaches focused on minimising the exploitability of the agent itself rather than attempting to

exploit opponents. This work uses both types of approaches depending on the situation.

Whilst recent state-of-the-art techniques have shown remarkable success, they have not strictly done so

under the conditions imposed by a typical online real-money setting with short time limits for decisions and

varying chip stack sizes. Moreover, the evaluation approach of paying a group of top professional human

players to incentivise them to perform their best is unsuitable to research projects with limited resources.

This work therefore aims to develop an agent capable of competing in a typical online micro-stakes real-

money game where it can be evaluated against a large player pool of human opponents.

2 Overview of Concepts and Related Work

“The analysis of a more realistic poker game than our very simple model should be quite an interesting

affair.” -John Forbes Nash, 1951

2.1 The Challenge of Large Imperfect Information Games

Unlike perfect information games such as chess and go, the states in an imperfect information game are not

well-defined. A state-of-the-art approach to solving chess would involve real-time depth-limited solving of a

sub-section of the game-tree, using values at leaf nodes that are estimates of the expected value of being in

that state of the game tree assuming that both players will play optimally going forward [2]. As per Noam

Brown et al in their 2018 paper [5], this does not work for imperfect information games. To understand why,

we need only consider the simple game of rock-paper-scissors (RPS), for which the extensive form can be

seen below [6]:

The rectangle surrounding the states wherein Agent 2 acts indicates that Agent 2 does not know which state it

is in. At the leaf nodes we have the rewards for Agent 1 and Agent 2 respectively. The optimal strategies for

both players or Nash equilibrium for the game of RPS is for both players to choose any action 𝑎 ∈ {𝑅, 𝑃, 𝑆}

with a probability of one-third. However, the assumption that Agent 1 plays this optimal strategy is by itself

insufficient for determining an optimal strategy for Agent 2, since the value of any action performed by

Agent 2 would be zero in that case. We might therefore surmise that Agent 2 could take any action with any

probability, such as playing 𝑅 100% of the time. This would indeed achieve the same reward if Agent 1

always plays the optimal strategy. The problem is that Agent 1 could then adjust to Agent 2’s strategy by

always playing 𝑃.

When we furthermore consider the enormity of possible states in the no-limit variant of poker (there are an

estimated 1075 states [7] with two players alone), we can understand the profound challenge that it has posed

as well as develop an appreciation for the success of recent state-of-the-art milestone research.

2.2 Early Approaches to Poker AI

In 1998, Darse Billings et al presented a foundational early poker agent dubbed Loki that used opponent

modelling, formula-based strategies, along with expert-defined rule-based logic [3, 15]. An opponent model

in poker can define a probability distribution over an opponent’s likely hole cards [15], a probability

distribution over a set of actions available to an opponent [16], or both. Opponent modelling has usually been

achieved via a neural network using features of the game state. There is moreover a distinction between

generic opponent modelling that models an average opponent and group-specific opponent modelling

whereby certain classes of opponents – obtained through clustering techniques – each have their own model

[17].

The researchers introduced the notions of hand strength, hand potential, and effective hand strength [15].

Hand strength measures the strength of a hand versus an opponent’s distribution of hole cards. Hand

potential is a measure of how likely the hand is to improve in strength. They also defined an alternative

metric to hand potential representing the likelihood of the hand strength decreasing. Combining all these, a

formula for two types of effective hand strength were presented, representing the value of betting and the

value of calling given future board cards to come. These were used as a metric for determining actions

following rule-based logic.

Billings would later present Poki, an improved version of Loki that notably performed nested subgame

simulations using Monte Carlo tree search [4]. A few years afterwards, the trend in poker-related research

began to shift toward methods very firmly based in the realm of game theory.

2.3 Extensive-Form Imperfect Information Games

Poker can also be modelled as a game tree of sequential multi-agent interactions in the same manner that is

depicted above for RPS. A formal description of an extensive-form imperfect information game has the

following components [8, 9]:

• The finite set 𝒫 of players. A special player 𝑐 ∉ 𝒫 also exists to represent the probability that some

action is taken (𝑐 may be thought of as nature or chance).

• The finite set ℋ of all game tree nodes. Each node ℎ ∈ ℋ represents a history of a possible sequence

of actions, as well as any information private to one player. The leaf nodes 𝒵 ⊆ ℋ are terminal

histories at which rewards are realised. A sequence of actions leading from ℎ to ℎ′ may be denoted as

ℎ ⊏ ℎ′, and the node following ℎ after an action 𝑎 is chosen is written as ℎ ∙ 𝑎.

• The function 𝐴, where 𝐴(ℎ) maps a node or history to a set of actions available at that history.

• The player function 𝑃, where 𝑃(ℎ) denotes the player who acts at a particular node.

• The function 𝑓𝑐 available at all nodes where 𝑃(ℎ) = 𝑐, whereby 𝑓𝑐(𝑎|ℎ) is the probability 𝑎 ∈ 𝐴(ℎ)

occurs given ℎ.

• The utility or reward function 𝑢𝑖 ∶ 𝒵 → ℛ for each player 𝑖 ∈ 𝒫, the range of which is denoted by 𝐿.

• An information partition 𝔗𝑖 of {ℎ ∈ ℋ ∶ 𝑃(ℎ) = 𝑖} for each player 𝑖 ∈ 𝒫 . Each member of the

partition 𝐼𝑖 ∈ 𝔗𝑖 or information set (infoset) represents the set of histories that are indistinguishable

to player 𝑖. In other words, for all ℎ, ℎ′ ∈ 𝐼𝑖, the player 𝑖 is unable to know whether she is in ℎ or ℎ′.

Furthermore, since 𝐴(ℎ) = 𝐴(ℎ′) for all ℎ, ℎ′ ∈ 𝐼𝑖, we can instead write 𝐴(𝐼𝑖).

Apart from information partitions and infosets, the definition is the same as it is for extensive-form perfect

information games. In the RPS diagram of the section 2.1, the encircled nodes constitute an infoset for Agent

2. Furthermore, if |𝒫| = 2 ∧ (𝑧) + 𝑢2(𝑧) = 0 then we say that the game is two-player zero-sum [9]. Note

that the provided formal definition allows for players to forget previously known information [8]. In poker

we assume that all players have perfect recall and remember all their actions.

2.4 Additional Game Theoretic Definitions

In addition to the main components of an extensive-form imperfect information game, let us take note of the

following definitions [9]:

A strategy or policy 𝜎(𝐼𝑖) is a discrete probability distribution (probability vector) over 𝐴(𝐼𝑖) . The

probability of a given action 𝑎 occurring at ℎ ∈ 𝐼𝑖 can be written as either 𝜎(ℎ, 𝑎) or 𝜎(𝐼𝑖, 𝑎). A strategy for a

particular player is denoted as 𝜎𝑖. A strategy profile 𝜎 is a tuple of strategies for every 𝑖 ∈ 𝒫. We denote the

strategy profile for all players other than 𝑖 as 𝜎−𝑖.

If, in response to 𝜎−𝑖, player 𝑖 plays a strategy 𝐵𝑅 that maximises her utility (expected value), this is known

as a best response strategy. More formally, 𝐵𝑅(𝜎−𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜎𝑖
′𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖) where 𝜎𝑖
′ denotes some

alternative strategy for player 𝑖.

We define a public state 𝐾 as a set of histories in which ℎ ∈ 𝐾 ∧ ℎ, ℎ′ ∈ 𝐼𝑖 → ℎ′ ∈ 𝐾. In a public state, all

players are aware that the true history or state of the game is some ℎ ∈ 𝐾, but due to hidden information,

they may know which history it is. An imperfect information subgame 𝑆, often simply called a subgame,

represents a union of public states such that the following holds true: ℎ ∈ 𝑆 ∧ ℎ′′ ∈ 𝑆 → ℎ ⊏ ℎ′ ⊏ ℎ′′.

2.5 Nash Equilibria

Suppose that in the game of RPS the strategy of Agent 1 is to play rock 40% of the time and paper and

scissors both 30% of the time. The best response of Agent 2 would then be to play paper 100% of the time.

However, Agent 1 could then adjust to Agent 2’s new strategy by always playing scissors. At some point,

they would both realise that to prevent the other player from hard countering their strategy, they should never

take any action with a relatively high probability. In fact, as previously mentioned, the Nash equilibrium of

RPS for which neither player is incentivised to deviate from their strategy is to take each action with an equal

probability of one-third.

A Nash equilibrium 𝜎∗ is a strategy profile where ∀ 𝑖, 𝑢𝑖(𝜎𝑖
′, 𝜎−𝑖

∗) = 𝑚𝑎𝑥𝜎𝑖
′𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
∗) [10]. More simply,

∀ 𝑖, 𝜎𝑖 = 𝐵𝑅(𝜎−𝑖), or in other words, every player’s strategy 𝜎𝑖 in 𝜎∗ is a best response to 𝜎−𝑖.

For large games, we typically wish to compute an approximation of a Nash equilibrium or 𝜖 -Nash

equilibrium defined by some sufficiently small constant 𝜖 where ∀ 𝑖, 𝑢𝑖(𝜎𝑖
′, 𝜎−𝑖

∗) + 𝜖 ≥ 𝑚𝑎𝑥𝜎𝑖
′𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
∗)

[13].

In two-player zero-sum games specifically, there is exactly one Nash equilibrium [11], and provided that the

game rules do not bias a certain player, each strategy 𝜎𝑖
∗ is essentially unbeatable, and 𝜎∗ is a solution to the

game itself [9]. The AI systems that have bested top human players in games like chess, Go, and two-player

no-limit poker have thus far all done so by approximating 𝜎∗ rather than attempting to exploit perceived

weaknesses in the human opponent’s strategy [9].

2.6 Limitations of Nash Equilibria in Multi-Player Games

For multi-player games which we define as games where |𝒫| > 2, there may be multiple or possibly an

infinite number of Nash equilibria, none of which are even guaranteed to be a favourable strategy [9, 11].

Unlike two-player zero-sum games where an agent 𝑖 may independently compute a Nash equilibrium without

the cooperation of 𝒫−𝑖, doing so when |𝒫| > 2 may not in fact result in a strategy profile that is a Nash

equilibrium [9, 11].

An illustrative example of this is the Lemonade Stand Game [12]. Each player simultaneously sets up a

lemonade stand along a circle as far away from the other players as possible to avoid business competition.

In a Nash equilibrium for the game, the players are all evenly spaced apart from one another. Since there are

an infinite number of ways this can happen, the Nash equilibria for the game are infinite. Notice furthermore

in the diagram below [12] that if each player independently chooses a position corresponding to a particular

Nash equilibrium, then the resulting strategy profile may not be a Nash equilibrium.

Despite this uncertainty of their reliability, in multi-player poker at least, the approximation of Nash

equilibria has empirically shown strong performance. In 2019, researchers developed the Pluribus agent that

defeated a group of top professionals in six-player poker for the first time [11]. The main caveat to its

success was that the agent and its human opponents played every hand using the same chip stack size of 100

big blinds. In reality, stack sizes in poker become imbalanced as chips are gained and lost, resulting in

varying optimal strategies that may indeed be quite different. Nevertheless, Pluribus was a milestone

achievement that demonstrated that Nash equilibria can yet be very effective in practice for multi-player

games despite the theoretical ambiguity.

2.7 Regret Minimization

The term regret, in plain terms, is a measure of how much we regret playing a particular strategy compared

to playing some alternative strategy. There are different notions of regret depending on the problem domain

[9]. The one used by state-of-the-art poker AI systems considers an agent 𝑖 playing a sequence of strategies

from a set of possible strategies 𝒮𝑖 over 𝑇 iterations. An outer loop iterates over 𝒮𝑖 as an inner loop iterates

over 𝑇. For each alternative strategy 𝜎𝑖
′ ∈ 𝒮𝑖, we measure the difference in utility between 𝜎𝑖

′ and 𝜎𝑖
𝑡. The

average overall regret of agent 𝑖 after 𝑇 iterations is then given by the following formula [9, 13]:

𝑅𝑖
𝑇 = maxσi

′∈𝒮𝑖

1

𝑇
∑[𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
𝑡) − 𝑢𝑖(𝜎𝑖

𝑡 , 𝜎−𝑖
𝑡)]

𝑇

𝑡=1

For two-player zero-sum games, it has been proven that the minimisation of regret for each player 𝑖 such that

𝑅𝑖
𝑇 ≤ 𝜖 results in an 𝜖-Nash equilibrium [9, 13]. There have been a variety of state-of-the-art algorithms for

doing this, most of them based on the counterfactual regret minimization (CFR) algorithm first introduced by

Zinkevich et al [13] in 2007.

2.8 Abstraction

As mentioned in section 2.1, there are an estimated 1075 states [7] in two-player no-limit poker alone – an

intractably large size. We wish to simplify the game to an abstraction of a manageable size, with the hope

that the utility of each player playing an 𝜖-Nash equilibrium in the simplified game does not differ drastically

when the same strategy profile is applied to the unabstracted game. Formally, an abstraction for player 𝑖 has

the following components [14]:

• A partition 𝛼𝑖
𝔗 of {ℎ ∈ ℋ ∶ 𝑃(ℎ) = 𝑖} for which each set in the partition is a subset of the

corresponding set in 𝔗𝑖. The elements of 𝛼𝑖
𝔗 are called abstract information sets, and 𝛼𝑖

𝔗 itself is an

information abstraction.

• A function 𝛼𝑖
𝐴 on histories such that for each abstract information set 𝐼𝑖

′ ∈ 𝛼𝑖
𝔗, the following holds

true: ∀ ℎ, ℎ′ ∈ 𝐼𝑖
′, 𝛼𝑖

𝐴(ℎ) ⊆ 𝐴(ℎ) ∧ 𝛼𝑖
𝐴(ℎ) = 𝛼𝑖

𝐴(ℎ′). A set of actions 𝛼𝑖
𝐴(ℎ) is then referred to as an

action abstraction.

In plain terms, an action abstraction limits the number of actions a player may take at each history. For

example, in poker we may choose to restrict each player to choosing between 𝑛 number of bet-sizing options.

Since the size of the game increases exponentially with the cardinality of the set of actions 𝐴(ℎ) [14], this

alone can have a significant impact.

Information abstraction involves limiting the size of the infosets. In the game of poker, this is done via a

technique called bucketing [4] whereby we merge hands of equal or similar strategic value. As an example,

imagine that the board cards are the following: Qd Tc 2c (Queen of diamonds, Ten of clubs, 2 of clubs). It

makes no difference to us whether we hold either 9h 8h or 9s 8s in this situation since the suits of our hole

cards do not match that of any card on the board, and we would choose to play the same exact strategy in

both cases. We may therefore bucket together the histories on this type of board where we were dealt either

holding and treat them as one individual history.

3 System Design and Analysis

The approach taken with the AI system presented here is to have the agent play as closely as possible to an 𝜖-

Nash equilibrium (NE) solution, whenever possible. However, computing an 𝜖-Nash equilibrium is PPAD-

complete in most cases [18], which, on the first and second betting rounds, is very challenging if not

infeasible to do in real-time within the 14-second timeframe permitted by the third-party external poker

client software. The agent instead accesses two separate databases of pre-computed NE solutions compiled

by third parties [19, 20] depending on the public state 𝐾 of the game. When 𝐾 is such that no solution exists

in either database, the agent then employs a separate decision-making system that uses an opponent model

combined with formula-based strategies and rules, which is based on the early Billings et al [15] system. The

entire AI system could be summarised into the following six main components:

• A screen reader that uses computer vision techniques to read relevant information within the game

window.

• A state manager responsible for recording all actions and relevant information for each history.

• An opponent model that predicts a probability vector over an abstracted set of actions 𝛼𝑖
𝐴(ℎ).

• An NE-based decision maker that issues HTTP requests to retrieve a solution from one of the two

third-party databases and chooses the most appropriate action 𝑎 ∈ 𝛼𝑖
𝐴(ℎ).

• A model-based decision maker that uses the opponent model along with formula-based strategies

and rules.

• An actor that performs actions by sending keyboard input to the game window.

A diagram depicting the interactions between these components is presented in the appendix (1).

As a research project, the system has not been designed with any target user in mind and it uses a command

line interface. The following sections detail the inner workings for each of these components.

3.1 Reading the Screen

The agent cannot directly access the information pertaining to the state of the game in the third-party poker

software. One option might be to locate exactly where the software is storing the information in memory, and

then read from those memory addresses. This however would most likely require much investigation and

would seemingly be less scalable for use with other external software. The approach taken here is to instead

process sub-sections of screen images containing the relevant information which are then forwarded to a

predictive optical character recognition (OCR) model. The screen reader uses the popular open-source OCR

engine Tesseract [21], the newest version of which is based on LSTM neural networks.

Upon running the application, the screen reader loads a JSON file into memory. This file contains the

bounding box coordinates for every area of the screen that should be captured. Since it would be tedious to

create this JSON file manually, a separate module was written to record the bounding boxes based on mouse

clicks, which draws rectangles on the screen to aid with accuracy.

Before feeding the images to the OCR model, they must first be processed to produce accurate results.

Tesseract’s results are only reliable when feeding it images of black text on a white background. In addition,

it often produces inaccurate results when numbers are combined with letters, such as in the below image:

In the poker client, the sizes of real-money chip stacks and wagers are represented in big blinds, hence the

text BB following the number. The goal then is to somehow produce an image of a black 9 on a white

background, with nothing else. Note that the area around the number cannot simply be captured because the

number is not always in the same exact position, and it may have multiple digits. Observing the image

closely however, we can notice that the background surrounding the text is a darker shade of green. The

screen reader exploits this dark-green background using techniques such as thresholding and contour

detection, which will be further detailed in section 4.1.

To detect where the button is on the screen, the reader uses template matching, whereby it searches for a sub-

image within the captured area of the screen. This technique is also used to detect images such as the back of

cards, indicating the presence of a player still involved in the hand, or the timebank of a certain player,

indicating that it is their turn to act. In other cases, such as detecting the card suits, a simpler approach is

used: since each suit has a unique colour, the reader simply averages the pixels of the card and checks if it

falls within a certain range.

3.2 Managing the Game State

To make decisions, the agent must know what has happened. The state manager runs at one-second intervals,

recording new information pertaining to the public game state such as the following: the sequence of actions

that have transpired, the total investments of each player for each round of betting, the pot and stack sizes,

and the wager amounts. Each player starting from the last active player to the currently active player is

sequentially examined. If they are no longer in the hand, it means that they folded. Otherwise, we look at the

money in front of them. If the money is equal to (or less than in the case of a player with little money) the

size of the last wager, this indicates a call – and otherwise, a raise.

One tricky aspect of this occurs on transitions from one betting round to another. In these cases, the last

player to act becomes the first player to act on the next round. All the wagers disappear and are added to the

pot. The speed with which human opponents act also cannot be controlled. For example, it could be possible

that after the agent makes a bet, two opponents very quickly call and one of them immediately bets on the

following round, all before the system has a chance to update. The state manager can infer what actions took

place using an algorithm detailed in section 4.2.

The state manager is moreover responsible for making calls to the appropriate decision-making sub-system

depending on both the public state 𝐾 and what we will refer to as the assumptive state 𝐾′. We can think of 𝐾′

as the result of applying a function to all ℎ ∈ 𝐾 such that every action within ℎ′ ∈ 𝐾′ is a member of an

action abstraction set 𝛼𝑖
𝐴(ℎ). This is useful because the NE solutions that the agent uses were computed with

highly abstracted (simplified) actions, and each bet or raise amount must therefore be rounded to the nearest

amount in the abstraction set. At some point, if the true actions taken in 𝐾 differ substantially from their

corresponding actions in 𝐾′ , then 𝐾′ becomes unreliable for determining a strategy via the NE-based

decision maker (in which case the model-based decision maker is used). The reliability of 𝐾′ is measured by

computing a mean-squared error across all corresponding histories in 𝐾 and 𝐾′ wherein the action taken at

each history is a bet or raise. To formalise this, let 𝑠 and 𝑠′ be corresponding equal-length sequences of bet or

raise amounts for every history in 𝐾 and 𝐾′ at which a bet or raise occurred. If
1

|𝑠|
∑ (𝑠𝑖 − 𝑠𝑖

′)2|𝑠|
𝑖=1 > 𝑐 where

𝑐 is some threshold constant, then the assumptive state 𝐾′ is considered to be unreliable and is disregarded

from that point onward in the hand (the model-based decision maker, which is then used, has no notion of

assumptive state). This reliability is checked after every update of the assumptive state by the NE-based

decision maker.

3.3 Predicting the Opponents’ Actions

A supervised learning model was created using hand history data obtained from the internet. The appendix (2)

contains one example hand from the dataset. A parser was written to extract a feature vector at each post-flop

history of the public state. Pre-flop and post-flop are poker-specific terms that respectively refer to the first

betting round (with no board cards) and any following betting round. The reason why pre-flop hands were

not considered when developing the model is two-fold. First, the style of play that occurs pre-flop is quite

different; each player only has two cards, and there are no board cards. Billings et al reported higher

accuracy for their model when disregarding pre-flop hands [16]. Secondly, being the first betting round, there

are much fewer states to account for compared to subsequent rounds. As a result, the NE-based decision

maker is relatively much more robust at resolving pre-flop strategies, seeing as it is much more likely for a

solution to exist in the pre-flop database compared to the post-flop database.

For each feature vector, there is one of three labels: the current player folded, the current player acted

passively (checked or called), the current player acted aggressively (bet or raised). The features used are

provided in the appendix (3). These features were fed through a deep neural network to produce a model that

can predict a probability vector over the three generic types of actions used as the labels. The AI system uses

a module dedicated to accessing this model and returning predictions. For example, it may use this to predict

a probability vector over the generic actions of the next player to act in response to a specific hypothetical

action taken by the agent. In other cases, we may wish to predict the probability that all remaining opponents

fold to an aggressive action taken by the agent, which is useful when deciding whether to bluff. This can be

computed by predicting the fold frequency of each opponent and multiplying them all together. Alternatively,

we may wish to predict the complement of the probability of all remaining opponents checking following a

check from the agent, which is the probability that at least one player makes a wager. This is useful when

deciding how often to check a hand that may be worth betting. The model module copies relevant info from

the public state and modifies it, each time calling the prediction method for the next opponent.

3.4 The NE-Based Decision Maker

This component uses modules that make HTTP requests to third-party servers for NE strategies. Due to

abstraction, the real wager amounts must be modified to request a valid game tree node. The servers return a

JSON response containing the strategy for the specific node requested along with its abstracted action set.

There are two third-party data providers that are used: one for pre-flop and one for post-flop. Notably, for

post-flop situations, the NE-based decision maker is only used when not more than two players progressed

past the first betting round.

One issue is that the pre-flop raise actions assumed by the post-flop solutions only include one sizing. The

approach taken is to strike a balance between choosing an appropriate pre-flop raise amount and choosing

amounts that are close to the ones assumed by the post-flop solutions. The way this is handled is by using the

average raise amount over the entire probability distribution of hole cards. Another way to think about this is

than an extra layer of abstraction is added whereby all raise actions are merged into one (all-in raise actions

are the only exception to this and are not merged).

Before sending a request to either server, a node path must be constructed using valid actions at each node.

The sequence of real actions that have occurred in 𝐾 are iterated and the nearest wager amounts are used

when constructing both the node path and the assumptive state. A cache is maintained that maps node paths

to corresponding action sets, which is how it can know what actions are available at each intermediary node

in 𝐾′. In the case that the node path does not exist in the cache, that intermediary node – and all intermediary

nodes that follow – must be requested before requesting the actual current node of 𝐾′.

Additionally, because these external web-based systems are primarily intended for browser use, an

authenticated status must be maintained using an HTTP session along with JSON web tokens, as well as

periodic requests to refresh the access token.

3.5 The Model-Based Decision Maker

This component uses the neural network model along with betting and calling formulas and rules to

determine a best course of action. The first thing it does is to calculate several metrics to be used in each of

the formulae. Hand strength (𝐻𝑆), hand potential, and effective hand strength (𝐸𝐻𝑆) are all calculated using

the algorithms documented by Billings in his PhD thesis [4], reproduced here in the appendix (4). Note that

𝐻𝑆 is afterward raised to the power of |𝒫−𝑖|, the number of remaining opponents, to produce 𝐻𝑆𝑛. There are

furthermore two types of hand potential: the probability of our hand improving in strength (𝑃𝑃𝑂𝑇), and the

https://zenith.poker/
https://gtowizard.com/

probability of the hand’s strength decreasing (𝑁𝑃𝑂𝑇). There are moreover two types of effective hand

strength: one used for betting or raising (𝐸𝐻𝑆𝑣) for value (i.e. with at least a relatively strong hand) and one

used for calling (𝐸𝐻𝑆𝑐), the formulae for which are as follows:

𝐸𝐻𝑆𝑣 = 𝐻𝑆𝑛 + (1 − 𝐻𝑆𝑛) ∗ 𝑃𝑃𝑂𝑇

𝐸𝐻𝑆𝑐 = 𝐸𝐻𝑆𝑣 − 𝐻𝑆𝑛 ∗ 𝑁𝑃𝑂𝑇

Whilst it is used by the model-based decision maker to compute EHS values, the notion of hand potential by

itself is perhaps not the most useful metric. In some cases, the potential of our hand improving may be quite

low; however, when it does improve, it may improve to a level of hand strength that is extremely high. An

example of this is a flush or straight draw. In fact, it may often be better to call with these types of draws

with the chance of winning additional bets on later rounds than to call with marginal hand with higher hand

potential. The approach taken is therefore to use a metric that will be referred to as nutted hand potential

(𝑁𝐻𝑃), the chance of improving to a hand for which 𝐻𝑆𝑛 > 𝑘 where 𝑘 is some constant near 1. The

algorithm to compute 𝑁𝐻𝑃 is presented in section 4.4.

There are believed to be other factors that should affect EHS besides the number of remaining opponents.

These factors are pot odds, post-flop aggression, and call count. Pot odds (𝑃𝑂) is the amount in the pot

divided by the amount to call. In the case that no one has bet, the pot odds can be represented as an infinite

number. Post-flop aggression (𝑃𝐴) will be defined as the number of bets or raises that occurred on any round

after the first. The call count (𝐶𝐶) is the number of players who called the last bet or raise. Using these

metrics, the new formulae for EHS values used by the agent are as follows:

𝐸𝐻𝑆𝑣
′ = (𝐸𝐻𝑆𝑣)1+𝑃𝐴+𝐶𝐶∗𝑃𝑂−1

𝐸𝐻𝑆𝑐
′ = (𝐸𝐻𝑆𝑐)𝑃𝐴+𝐶𝐶∗𝑃𝑂−1

A new metric 𝐸𝐻𝑆𝑠 is also used to represent the showdown value of a hand, which is a measure of how much

the agent would like to show its hand down without bluffing or betting for value:

 𝐸𝐻𝑆𝑠 = (𝐸𝐻𝑆𝑣)1+𝑃𝐴

𝐸𝐻𝑆𝑣
′ is compared to a constant 𝑘𝑣 to determine whether the hand can be bet for value. If it can, then the

hand’s worth is determined by linearly interpolating 𝐸𝐻𝑆𝑣
′ from the interval [𝑘𝑣 , 1] to the interval [𝑤0, 𝑤𝑛]

where 𝑤0 and 𝑤𝑛 are the smallest and largest wager amounts in the action set. The worth represents how

much the agent is willing to bet and is rounded to 𝑤𝑣, the nearest amount in 𝑤. Wager amounts in 𝑤 are then

iteratively tested up to 𝑤𝑣, computing an expected value (EV) for each of them based on how frequently the

model predicts the opponent(s) will fold. The highest EV wager amount is then selected.

In the case of calling, the 𝑘 value, 𝑘𝑐, is no longer constant; it is determined by fitting 𝑃𝑂 to a non-linear

function. The function 𝑓(𝑥) = (𝑥 − 10)−2 is used, which is based on an upper bound of 20 set for 𝑃𝑂 and

was found through experimentation. Additionally, the formula 𝐸𝑉𝑐 = 𝑅𝑃 ∗ 𝑁𝐻𝑃 − 𝐶𝐴(1 − 𝑁𝐻𝑃) is used to

estimate the expected value of calling with nutted hand potential. If either 𝐸𝐻𝑆𝑐
′ > 𝑘𝑐 or 𝐸𝑉𝑐 > 0, then the

agent considers its hand to be a profitable call.

When considering whether to bluff, the agent considers the predicted success rate 𝑆𝑅 of bluffing, which is

the probability that all remaining opponents fold. Let 𝑅𝑃 be the size of the raked pot (the slightly reduced pot

size that accounts for rake, which is the percentage taken by the poker room as a game host fee), and let 𝑃𝐼𝑃

be the additional amount that we put into the pot as a result of betting or raising to some percentage of the

pot 𝑤𝑏. We can estimate the EV of bluffing on the flop or turn (the second or third betting rounds) as follows:

𝐸𝑉𝑏 = 𝑅𝑃 ∗ 𝑆𝑅 + (1 − 𝑆𝑅)(𝑅𝑃 ∗ 𝑁𝐻𝑃 − 𝑃𝐼𝑃(1 − 𝑁𝐻𝑃))

Note that 𝑁𝐻𝑃 is undefined on the river (the final betting round), but in that case, 𝐸𝑉𝑏 can be calculated

more simply as 𝑅𝑃 ∗ 𝑆𝑅 − 𝑃𝐼𝑃(1 − 𝑆𝑅).

3.6 Performing Actions

The actor component randomly samples an action from the strategy returned by either of the two decision

makers. The action is then performed within the poker client using keyboard input. Wager amounts in

increments of 5% of the pot are mapped to hotkeys that were set up within the poker client, and the hotkey

for the nearest increment is used. The actor may wait a random amount of time before performing an action.

Note that the keypress duration for a human is typically between 50 and 300 milliseconds [19]. After

initiating a keypress, the actor attempts to imitate this human behaviour by waiting some random number of

milliseconds within that range before releasing the key.

4 Implementation

The poker AI system has been implemented using the Python programming language, along with open-

source libraries such as Tesseract and OpenCV for the screen reader, and TensorFlow for the opponent model.

Following sub-sections contain some noteworthy implementation details and algorithms.

4.1 Reading Wagers: Image Processing Pipeline

By thresholding an image using a range of pixel values, a binary mask of the image is produced. From that

binary pixel array, using the OpenCV library [22], the bounding boxes for the contours of the area of the

dark-green region as well as that of the first B in a wager image can be detected.

The resulting image is then passed to Tesseract’s OCR model. This process differs depending on the type of

element on the screen to be read, but reading the wager is the most involved.

4.2 Inferring Past Actions

Supposing that the state manager updates on the following two consecutive frames, it can infer the correct

sequence of actions that has occurred so far in the hand:

https://github.com/tesseract-ocr/tesseract
https://github.com/opencv/opencv
https://www.tensorflow.org/

In other words, with only two frames, it can know that all players before the small blind player folded, the

small blind player raised, the big blind player re-raised, the small blind player called and then checked on the

flop (the next round). To infer actions that occurred between betting rounds, it uses the following algorithm:

function UpdateLastRoundActions:

 # Handle cases where the remaining players checked or folded

 if last unraked pot recorded >= current raked pot:

 for each player from the last active to the currently active:

 if the player is in the hand:

 if there is no recorded action for the player on the last round:

 UpdateState(player, "check")

 else:

 UpdateState(player, "fold")

 # Nothing further to consider, so just return

 return

 remaining = list() # This will store any remaining players to account for

 actions = dict() # A map of players to actions

 for each player from the last active to the currently active:

 if the player is in the hand:

 remaining.append(player)

 else:

 actions[player] := (player, "fold")

 # Handle cases where any remaining players called

 total := last recorded unraked pot

 if there is any recorded wager:

 for player in remaining:

 total += player's recorded investment on the last round

If, by adding to the prior-round investments of the remaining players to match the prior-round last wager, we can equal or

exceed the raked pot, then we can assume that any remaining players whose prior-round investment was lower than the last

wager had called

 if total >= raked pot:

 for player in remaining:

 if player's prior-round investment = last wager:

 break

 actions[player] = (player, "call", last wager)

 else:

 # The agent is assumed to have bet or raised

 unrakedPot := min(rakedPot plus rake cap, rakedPot / (1 - rake))

 inv := total investments of all remaining players for the last round

 wager := (unrakedPot - last unraked pot + inv) / length(remaining)

 actionString := "bet" if no last wager else "raise"

 actions[agent] = (agent, actionString, wager)

 remaining.pop(0) # Remove the agent

 for player in remaining:

 actions[player] = (player, "call", wager)

 # ensure that actions are added in the proper order

 for each player from the last active to the currently active:

 if player in actions:

 UpdateState(action[player])

4.3 Training the Opponent Model

The parser processed roughly five million poker hands in text format like the example in the appendix (2).

Features of the post-flop game state for every non-terminal node were appended to a CSV file which was

later converted to a Numpy feature matrix. All columns of the matrix were normalised to the interval [0, 1]

using one of two techniques. Min-max normalisation was used for columns whose values fall within a certain

range. That is to say, the function 𝑓(𝑥) =
𝑥−𝑥0

𝑥𝑛−𝑥0
 was applied to each element of the column, with 𝑥0 and 𝑥𝑛

being the min and max of the range of possible values of the feature. For a few of the features whose values

could theoretically be unbounded (e.g. the stack to pot ratio) the function 𝑓(𝑥) =
𝑥

1+𝑥
 was used.

The feature vectors in the matrix totalled roughly 26.2 million, and the data was shuffled and split using 80%

for training, 10% for validation, and 10% for testing. The size of the input layer – or the number of features –

was 18, and four densely connected hidden layers were used, as can be seen in the model architecture below:

The length of the output layer, which is 3, corresponds to the number of labels. This is because the output is a

probability vector over these labels. The loss function used was categorical cross-entropy, which measures

the distance between probability distributions. Other hyperparameters used are presented in the table below:

Hidden layer activation function ReLU
Last layer activation function Softmax
Optimizer RMSProp
Learning rate 0.005
Batch size 214

Hyperparameter tuning largely involved experimenting with the learning rate and the batch size.

Regularization was briefly toyed with, but it did not appear to be useful, perhaps due to the very large size of

the dataset.

4.4 Model-Based Decision-Making Algorithms

The algorithm to compute nutted hand potential is presented below:

function NuttedHandPotential(CARDS holeCards, CARDS boardCards, INT numOpponents, FLOAT k) -> NULL or FLOAT:

 if length(boardCards) = 5:

 return NULL

 # remove known cards from the deck

 SET deck := copy(_DECK_)

 for card in holeCards + boardCards:

 deck.remove(card)

 INT nutted := 0

 INT total := 0

 # consider all possible combinations of board runouts

 for CARDS combo in Combinations(deck, 5 - length(boardCards)):

 for card in combo:

 deck.remove(card)

 CARDS board := boardCards + runout

 FLOAT handStrength := HandStrength(holeCards, board, numOpponents, deck)

 for card in combo:

 deck.add(card)

 total += 1

 if handStrength > k:

 nutted += 1

 return nutted / total

Note that the algorithm is computation intensive on the flop. It makes calls to the implementation of Billings

et al’s HandStrength algorithm, which compares the agent’s hole cards to every possible pair of cards that the

opponent may hold. HandStrength, in turn, makes calls to a Rank function, which, given a list of cards, finds

the best five-card hand and outputs an integer such that stronger hands receive a higher value and hands of

equal strength receive the same value. For the Rank function, the open source eval7 poker library is used.

Rank must be called (47
2)(45

2) + (47
2) = 1,071,271 times on the flop, which takes roughly 6.5 seconds with

Python. The algorithm can however be easily modified to consider only the very next card to come, resulting

in only 47(46
2) + 47 = 48,692 calls to Rank on the flop. A default value for 𝑘 of 0.955 is used.

Below is the general algorithm that the model-based decision maker uses to determine a strategy:

function Make(state) -> LIST<TUPLE>:

 if the round is pre-flop:

 return MakePre(state)

 metrics := GetMetrics(state)

 unopened := True if no one bet yet else False

 # Check to pre-flop aggressor on flop when acting before

 if unopened AND Agent acts before last aggressor AND round = flop:

 return [("Check", 1)] # Check with 100% probability

 valuePct := GetValuePct(state) # The percentage of pot to be bet or raised

 if valuePct > 0:

 if unopened:

 if Agent is not last to act:

 checkGetsAction := 1 - Model.predictAllCheck(state)

 return [("Check", checkGetsAction), ("Bet", 1 - checkGetsAction, valuePct)]

 else:

 return [("Bet", 1, valuePct)] # Bet with 100% probability

 else:

 return [("Raise", 1, valuePct)]

https://github.com/julianandrews/pyeval7

 if not unopened and CanCall(state):

 return [("Call", 1)]

 bluffPct := GetBluffPct(state) # The percentage of pot to be bluffed

 if bluffPct > 0:

 if unopened:

 return [("Bet", 1, bluffPct)]

 else:

 return [("Raise", 1, bluffPct)]

 if unopened:

 return [("Check", 1)]

 return [("Fold", 1)]

The function MakePre is infrequently used, because the NE-based decision maker is usually quite competent

with resolving a pre-flop strategy. If MakePre does need to be used, the strategy is quite a simple one that is

based on how many raises occurred and how strong the hole cards are. The functions GetValuePct and

GetBluffPct use the ideas and formulae discussed in section 3.5 to determine what percentage of the pot

should be wagered, whereas CanCall uses them to return a Boolean.

5 Evaluation

The opponent model was evaluated separately from the AI system. The metrics of categorical cross-entropy,

precision, and recall were used for model evaluation. To evaluate the AI system as a whole, the bot was

tested at the lowest stakes available within the poker client.

5.1 Evaluating the Opponent Model

As mentioned previously, the three labels used by the classifier involve folding, acting passively (checking or

calling), and acting aggressively (betting or raising), which will be referred to as F, C, and R respectively.

The distribution of actions in the dataset was as follows:

F 16.8%

C 57.6%

R 25.7%

Due to the imbalanced nature of the dataset, accuracy could not be relied on as an evaluation metric. Instead,

the metrics of precision and recall were both used in addition to categorical cross-entropy (the loss).

It was reasoned that a classifier predicting each label with a probability corresponding to its frequency in the

dataset would serve as a useful baseline for comparison. The table below shows the results of the baseline

classifier on the test set. Note that the loss is inversely proportional to the model’s performance, with a

higher value indicating worse performance.

Baseline Loss 96.7%

Baseline Precision 42.5%

Baseline Recall 42.5%

The trained model was unable to be overfit. One reason that this may be is that there was already a high

degree of linear separability in the data. In fact, even when using zero hidden layers, the validation loss on

the best epoch was not much worse than it was with the architecture of four densely connected layers that

was later adopted – suggesting this to be the case. When using zero hidden layers, it achieved loss, precision

and recall scores of 68.8%, 66.0% and 61.7% respectively. Another reason may be due to the nature of the

classification problem, which is also a reason why precision and recall themselves are not fully

representative of the model’s performance.

5.1.1 Limitations of Precision and Recall

For a multi-class supervised learning task, what are we trying to predict? We are trying to predict a single

solitary label: for example, whether an image is of a lion, a tiger, or a bear, given that only one animal is

present in each image. In a multi-label supervised learning task, there may be multiple animals present in

each image, and so we wish to predict one or more labels for each image. The classification task being dealt

with in this report, however, does not fit neatly into either of these two categories. What the opponent model

actually predicts is not a subset of labels, but rather a probability distribution over all the labels: i.e., how

often is the average opponent expected to perform each type of action? Moreover, it is unclear what a target

probability distribution should be. It is only known that the human player performed a certain action; the

player’s strategy itself is unknown.

To make this limitation clearer, imagine that the average player’s true strategy at a certain history is to fold

40% of the time, check or call 55%, and bet or raise 5%. The probability vector for this distribution is

[0.4, 0.55, 0.05]. Suppose that the classifier predicts a probability vector of [0.05, 0.55, 0.4]. This would

indeed correctly predict the highest probability label of C, but it may not be very useful. The knowledge that

the average player folds with 40% frequency in this situation could be quite beneficial, for example, if the

pot odds are such that 40% is a high number.

5.1.2 Final Model Results

Despite the limitations discussed above, the multi-class precision and recall scores, when compared to the

baseline results, does at least give some sense of the model’s performance, and were thus included as

evaluation metrics. The results of the final trained model on the test set can be seen below:

Model Loss 65.7%

Model Precision 68.7%

Model Recall 64.5%

The best metric for evaluation is ultimately the categorical cross-entropy loss function itself, which measures

the error of the probability distribution returned by the last-layer Softmax activation function. The final

model showed a reduction of 32.1% in loss from that of the baseline classifier.

5.2 Evaluating the Agent’s Performance

The agent was evaluated by having it play the lowest real-money stakes offered within the poker client, i.e.

2-cent big blind games (USD currency). The results, which were obtained by parsing the hand history text

files generated by the poker client, are presented below:

Hands played 847

Net won (BB) 32

Rake Paid (BB) 43

Net won (USD) 0.64

Rake paid (USD) 0.86

Raked win-rate (BB per 100 hands) 0.08

Unraked win-rate (BB per 100 hands) 0.18

The agent made a very small profit of 0.64 USD, or 32 big blinds. This is a statistically meaningless result

over only 847 hands. If we assume that the agent’s true win-rate is 0.08 BB/100, and assuming that the

standard deviation of a six-player no-limit poker win-rate is 90 BB/100 as reported here, then, using a

confidence level of 95%, the margin of error for net winnings after only 847 hands is ±524 BB. The agent

would need to play very many more hands to make any kind of conclusion about its overall performance.

Unfortunately, time did not permit that to happen.

https://poker.stackexchange.com/questions/373/optimal-win-rate-standard-deviation

6 Conclusions and Remarks

Although no conclusion can be made regarding the agent’s overall performance, it could be argued that the

creation of a poker AI system that can make decisions which at least seem reasonable is not an insignificant

task, particularly when its decisions must essentially be based on images generated by external software. To

that end, this project combined knowledge from a few different areas such as machine learning, computer

vision, game theory, and web-based systems. It was moreover observed that supervised learning can be a

useful method of predicting probability distributions over a set of labels.

6.1 Further Work

Through the combined use of information abstraction and supervised learning, the agent could likely be

improved with an additional model that predicts a probability distribution over an opponent’s likely hole

cards [4]. The categorisation of opponents based on observed actions should also be considered, whereby

each class of opponent could have its own model [17]. Playing out a subgame through Monte Carlo

simulation may also enable more accurate estimations for the expected value of actions [17]. Moreover,

when facing a bet or raise, the NE-based decision maker could be improved by requesting the nodes for the

nearest two wager amounts in the abstracted action set and interpolating them based on the true wager

amount.

6.2 Code Availability

All source code for this project is available in the following Github repository:

https://github.com/eicksl/cm3070

To set up the agent, first decompress the README.zip file and then follow the instructions therein.

6.3 Statement on Ethics and Impact

In the realm of financial markets, automation through the use of trading algorithms is often encouraged. In

the poker-playing community however, it is not well-embraced, most likely due to the zero-sum nature of the

game. Additionally, whilst there are no legal issues with running a poker bot, the use of automated decision-

making software may be in violation of the poker room’s terms of service, depending on the company. With

these issues in mind, the evaluation approach taken here should be reconsidered. To prevent potential abuse,

the source code repository will be made private after a final mark has been released. Whilst the code does

remain public, the readme file has been compressed to limit search engines from leading unwanted traffic to

the repository.

https://github.com/eicksl/cm3070

References

[1] Findler et al. Studies on decision making using the game of poker. Proceedings of IFIP Congress 1971,

pages 1448-1459 (1972).

[2] Murray Campbell et al. Deep Blue. Artificial Intelligence, 134(1-2):57-83 (2002).

[3] Denis Papp. Dealing with imperfect information in poker. Master’s thesis, University of Alberta (1998).

[4] Darse Billings. Algorithms and assessment in computer poker. PhD thesis, University of Alberta (2006).

[5] Brown, N., Sandholm, T., and Amos, B. Depth-limited solving for imperfect-information games.

Advances in Neural Information Processing Systems (2018).

[6] Korukhova, Y. and Kuryshev, S. Training agents with neural networks in systems of imperfect

information. ICAART (1) (2017).

[7] Johanson, M. Measuring the size of large no-limit poker games. Technical Report TR13-01, Department

of Computing Science, University of Alberta (2013).

[8] M. Osborne and A. Rubenstein. A Course in Game Theory. The MIT Press, Cambridge, Massachusetts

(1994).

[9] Noam Brown. Equilibrium finding for large adversarial imperfect-information games. PhD thesis,

University of Michigan (2020).

[10] John Nash. Non-cooperative games. Annals of Mathematics, 54:289-295 (1951).

[11] Noam Brown et al. Superhuman AI for multiplayer poker. Science volume 356, issue 6456 (2019). DOI:

10.1126/science.aay2400.

[12] M. ZInkevich, M. Bowling, and M. Wunder. The lemonade stand game competition: solving unsolvable

games. ACM SIGecom Exchanges, 10(1):35-38 (2011).

[13] M. Zinkevich et al. Regret minimization in games with incomplete information. Neural Information

Processing Systems (NeurIPS), pages 1729-1736 (2007).

[14] K. Waugh et al. Abstraction pathologies in extensive games. AAMAS (2) 2009, 781-8 (2009).

[15] Billings et al. Opponent modeling in poker. Aaai/iaai, 493(499):105 (1998).

[16] Billings et al. Improved opponent modeling in poker. International Conference on Artificial Intelligence,

ICAI’00 (2000).

[17] A.A.J. van der Kleij. Monte Carlo Tree Search and Opponent Modeling through Player Clustering in no-

limit Texas Hold’em Poker. Master’s thesis, University of Groningen (2010).

[18] Aviad Rubinstein. Inapproximability of Nash equilibrium. SIAM Journal on Computing, 47(3):917-959

(2018).

[19] Kevin Killourhy and Roy Maxion. Comparing anomaly-detection algorithms for keystroke dynamics.

2009 IEEE/IFIP International Conference on Dependable Systems & Networks, pp. 125-134 (2009).

Appendix

1 System Architecture Diagram

2 Example Hand from Dataset

PokerStars Hand #233578654693: Hold'em No Limit ($0.01/$0.02 USD) - 2022/01/29 23:39:42 ET

Table 'Aaltje III' 6-max Seat #6 is the button

Seat 1: Martin-NH14 ($3.14 in chips)

Seat 2: jsvh55 ($2.17 in chips)

Seat 3: galamtor ($1.37 in chips)

Seat 4: TracyTheNuts ($2.39 in chips)

Seat 5: mangalisa ($2.23 in chips)

Seat 6: Rez9I ($2.15 in chips)

Martin-NH14: posts small blind $0.01

jsvh55: posts big blind $0.02

*** HOLE CARDS ***

galamtor: calls $0.02

TracyTheNuts: raises $0.04 to $0.06

mangalisa: calls $0.06

Rez9I: calls $0.06

Martin-NH14: folds

jsvh55: calls $0.04

galamtor: calls $0.04

*** FLOP *** [Th 5s Jc]

jsvh55: checks

galamtor: checks

TracyTheNuts: checks

mangalisa: checks

Rez9I: checks

*** TURN *** [Th 5s Jc] [Qh]

jsvh55: checks

galamtor: checks

TracyTheNuts: bets $0.21

mangalisa: folds

Rez9I: calls $0.21

jsvh55: folds

galamtor: calls $0.21

*** RIVER *** [Th 5s Jc Qh] [3c]

galamtor: checks

TracyTheNuts: checks

Rez9I: checks

*** SHOW DOWN ***

galamtor: shows [8d Jd] (a pair of Jacks)

TracyTheNuts: shows [Qs Ah] (a pair of Queens)

Rez9I: mucks hand

TracyTheNuts collected $0.91 from pot

*** SUMMARY ***

Total pot $0.94 | Rake $0.03

Board [Th 5s Jc Qh 3c]

Seat 1: Martin-NH14 (small blind) folded before Flop

Seat 2: jsvh55 (big blind) folded on the Turn

Seat 3: galamtor showed [8d Jd] and lost with a pair of Jacks

Seat 4: TracyTheNuts showed [Qs Ah] and won ($0.91) with a pair of Queens

Seat 5: mangalisa folded on the Turn

Seat 6: Rez9I (button) mucked

3 Features

Feature Datatype Description

Round Integer Betting round

HighCard Integer Highest card on the board

AverageRank Float Rank of the average card on the board

FlushPossible Boolean Flush is possible

BoardPaired Boolean Board is paired

HasFour Boolean Board has four to a straight or four to a flush

LC3Flush Boolean The last board card brought three to a flush

LC4Flush Boolean The last board card brought four to a flush

LC4Straight Boolean The last board card brought four to a straight

LCOvercard Boolean The last board card is of the highest rank

PlayerAggression Float
(1 + 𝑅)/(1 + 𝐶) where 𝑅 is the total bets or raises of
player to act and 𝐶 is the total checks or calls

OpponentAggression Float
(1 + 𝑅)/(1 + 𝐶) where 𝑅 is the total bets or raises of the
last aggressor and 𝐶 is the total checks or calls

NumAggCurrentRound Integer Number of total bets or raises on the current round

IsLastAggressor Boolean Player to act is the last aggressor

SPR Float Ratio of player’s stack to the pot size

AmountToCall Float Amount to call (zero if no one bet)

NumPlayers Integer Number of players in the hand

RelativePosition Float
A measure of a player’s position relative to the button,
such that 0 is assigned to the first player to act and 1 is
assigned to the player nearest to the button

4 Hand Strength and Potential: Algorithms of Billings et al

