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Abstract 
 

For the past generation, poker has been a popular testbed for AI research involving 

imperfect information. While significant progress has been made in recent years, the 

amount of computation time required for state-of-the-art methods makes them 

challenging to implement in a competitive online real-money environment where an 

agent can arguably be best evaluated. Here a simpler time-efficient alternative 

approach for six-player no-limit holdem poker is presented, borrowing from both 

newer and older methods. Also discussed is the topic of how the game state may be 

read from external software such as a commercial poker client. An evaluation of the 

application’s critical components and overall performance is then presented. 

 

 

1 Introduction 
 

Many real-world problems resemble games of imperfect information. Consider, for example, a negotiation 

involving multiple parties where each party is attempting to exert leverage and persuade the other parties to 

compromise. The objective of any game, negotiation included, is to behave optimally with the goal of 

maximising one’s utility. However, factors such as what the other parties know or do not know, as well as 

personality traits which may or may not be known, are often of great importance when determining an 

optimal strategy for negotiation. A game such as this can be very complicated and difficult to model indeed. 

That is why many researchers throughout the years have focused their attention on the development of 

autonomous agents that can play games such as chess, and more recently video games and poker, as a means 

of benchmarking the success of artificial intelligence and gaining new insight into how to extend the 

techniques to real-world applications including elections, security interactions, and financial markets. 

 

Poker itself has been compared to “policy decisions in commercial enterprises and in political campaigns” 

[1]. Aside from imperfect information, there are several aspects to the game that make it an interesting topic 

of research, such as opponent modelling and management of risk. There is also a significant deceptive 

element to the game in the form of wagering with a weak hand (i.e. bluffing) or passing one’s turn (i.e. 

checking) with a strong hand. Early approaches focused on modelling opponents along with computing best-

response actions through formulae determined by those with expert domain knowledge of the game [3, 4]. In 

the past decade however there has been a divergence from exploitation-based opponent modelling to game 

theoretic approaches focused on minimising the exploitability of the agent itself rather than attempting to 

exploit opponents. This work uses both types of approaches depending on the situation. 

 

Whilst recent state-of-the-art techniques have shown remarkable success, they have not strictly done so 

under the conditions imposed by a typical online real-money setting with short time limits for decisions and 

varying chip stack sizes. Moreover, the evaluation approach of paying a group of top professional human 

players to incentivise them to perform their best is unsuitable to research projects with limited resources. 

This work therefore aims to develop an agent capable of competing in a typical online micro-stakes real-

money game where it can be evaluated against a large player pool of human opponents. 

 

 

 

 



2 Overview of Concepts and Related Work 
 
“The analysis of a more realistic poker game than our very simple model should be quite an interesting 

affair.” -John Forbes Nash, 1951 

 

 

2.1 The Challenge of Large Imperfect Information Games 
 

Unlike perfect information games such as chess and go, the states in an imperfect information game are not 

well-defined. A state-of-the-art approach to solving chess would involve real-time depth-limited solving of a 

sub-section of the game-tree, using values at leaf nodes that are estimates of the expected value of being in 

that state of the game tree assuming that both players will play optimally going forward [2]. As per Noam 

Brown et al in their 2018 paper [5], this does not work for imperfect information games. To understand why, 

we need only consider the simple game of rock-paper-scissors (RPS), for which the extensive form can be 

seen below [6]: 

 

 

 

 

 

 

 

 
 

 

The rectangle surrounding the states wherein Agent 2 acts indicates that Agent 2 does not know which state it 

is in. At the leaf nodes we have the rewards for Agent 1 and Agent 2 respectively. The optimal strategies for 

both players or Nash equilibrium for the game of RPS is for both players to choose any action 𝑎 ∈ {𝑅, 𝑃, 𝑆} 

with a probability of one-third. However, the assumption that Agent 1 plays this optimal strategy is by itself 

insufficient for determining an optimal strategy for Agent 2, since the value of any action performed by 

Agent 2 would be zero in that case. We might therefore surmise that Agent 2 could take any action with any 

probability, such as playing 𝑅 100% of the time. This would indeed achieve the same reward if Agent 1 

always plays the optimal strategy. The problem is that Agent 1 could then adjust to Agent 2’s strategy by 

always playing 𝑃. 
 

When we furthermore consider the enormity of possible states in the no-limit variant of poker (there are an 

estimated 1075 states [7] with two players alone), we can understand the profound challenge that it has posed 

as well as develop an appreciation for the success of recent state-of-the-art milestone research. 

 

 

2.2 Early Approaches to Poker AI 

 
In 1998, Darse Billings et al presented a foundational early poker agent dubbed Loki that used opponent 

modelling, formula-based strategies, along with expert-defined rule-based logic [3, 15]. An opponent model 

in poker can define a probability distribution over an opponent’s likely hole cards [15], a probability 

distribution over a set of actions available to an opponent [16], or both. Opponent modelling has usually been 

achieved via a neural network using features of the game state. There is moreover a distinction between 

generic opponent modelling that models an average opponent and group-specific opponent modelling 

whereby certain classes of opponents – obtained through clustering techniques – each have their own model 

[17]. 

 

The researchers introduced the notions of hand strength, hand potential, and effective hand strength [15]. 

Hand strength measures the strength of a hand versus an opponent’s distribution of hole cards. Hand 

potential is a measure of how likely the hand is to improve in strength. They also defined an alternative 

metric to hand potential representing the likelihood of the hand strength decreasing. Combining all these, a 



formula for two types of effective hand strength were presented, representing the value of betting and the 

value of calling given future board cards to come. These were used as a metric for determining actions 

following rule-based logic. 

 

Billings would later present Poki, an improved version of Loki that notably performed nested subgame 

simulations using Monte Carlo tree search [4]. A few years afterwards, the trend in poker-related research 

began to shift toward methods very firmly based in the realm of game theory. 
 

 

2.3 Extensive-Form Imperfect Information Games 
 

Poker can also be modelled as a game tree of sequential multi-agent interactions in the same manner that is 

depicted above for RPS. A formal description of an extensive-form imperfect information game has the 

following components [8, 9]: 

 

• The finite set 𝒫 of players. A special player 𝑐 ∉ 𝒫 also exists to represent the probability that some 

action is taken (𝑐 may be thought of as nature or chance). 

• The finite set ℋ of all game tree nodes. Each node ℎ ∈ ℋ represents a history of a possible sequence 

of actions, as well as any information private to one player. The leaf nodes 𝒵 ⊆ ℋ are terminal 

histories at which rewards are realised. A sequence of actions leading from ℎ to ℎ′ may be denoted as 

ℎ ⊏ ℎ′, and the node following ℎ after an action 𝑎 is chosen is written as ℎ ∙ 𝑎. 

• The function 𝐴, where 𝐴(ℎ) maps a node or history to a set of actions available at that history. 

• The player function 𝑃, where 𝑃(ℎ) denotes the player who acts at a particular node. 

• The function 𝑓𝑐 available at all nodes where 𝑃(ℎ) = 𝑐, whereby 𝑓𝑐(𝑎|ℎ) is the probability 𝑎 ∈ 𝐴(ℎ) 

occurs given ℎ. 

• The utility or reward function 𝑢𝑖 ∶ 𝒵 → ℛ for each player 𝑖 ∈ 𝒫, the range of which is denoted by 𝐿. 

• An information partition 𝔗𝑖  of {ℎ ∈ ℋ ∶ 𝑃(ℎ) = 𝑖}  for each player 𝑖 ∈ 𝒫 . Each member of the 

partition 𝐼𝑖 ∈ 𝔗𝑖 or information set (infoset) represents the set of histories that are indistinguishable 

to player 𝑖. In other words, for all ℎ, ℎ′ ∈ 𝐼𝑖, the player 𝑖 is unable to know whether she is in ℎ or ℎ′. 

Furthermore, since 𝐴(ℎ) = 𝐴(ℎ′) for all ℎ, ℎ′ ∈ 𝐼𝑖, we can instead write 𝐴(𝐼𝑖). 

 

Apart from information partitions and infosets, the definition is the same as it is for extensive-form perfect 

information games. In the RPS diagram of the section 2.1, the encircled nodes constitute an infoset for Agent 

2. Furthermore, if |𝒫| = 2 ∧ (𝑧) + 𝑢2(𝑧) = 0 then we say that the game is two-player zero-sum [9]. Note 

that the provided formal definition allows for players to forget previously known information [8]. In poker 

we assume that all players have perfect recall and remember all their actions. 

 

 

2.4 Additional Game Theoretic Definitions 
 

In addition to the main components of an extensive-form imperfect information game, let us take note of the 

following definitions [9]: 

 

A strategy or policy 𝜎(𝐼𝑖)  is a discrete probability distribution (probability vector) over 𝐴(𝐼𝑖) . The 

probability of a given action 𝑎 occurring at ℎ ∈ 𝐼𝑖 can be written as either 𝜎(ℎ, 𝑎) or 𝜎(𝐼𝑖, 𝑎). A strategy for a 

particular player is denoted as 𝜎𝑖. A strategy profile 𝜎 is a tuple of strategies for every 𝑖 ∈ 𝒫. We denote the 

strategy profile for all players other than 𝑖 as 𝜎−𝑖. 

 

If, in response to 𝜎−𝑖, player 𝑖 plays a strategy 𝐵𝑅 that maximises her utility (expected value), this is known 

as a best response strategy. More formally, 𝐵𝑅(𝜎−𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜎𝑖
′𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖)  where 𝜎𝑖
′  denotes some 

alternative strategy for player 𝑖. 
 

We define a public state 𝐾 as a set of histories in which ℎ ∈ 𝐾 ∧  ℎ, ℎ′ ∈ 𝐼𝑖  →  ℎ′ ∈ 𝐾. In a public state, all 

players are aware that the true history or state of the game is some ℎ ∈ 𝐾, but due to hidden information, 

they may know which history it is. An imperfect information subgame 𝑆, often simply called a subgame, 

represents a union of public states such that the following holds true: ℎ ∈ 𝑆  ∧   ℎ′′ ∈ 𝑆 →  ℎ ⊏ ℎ′ ⊏ ℎ′′. 



 

 

2.5 Nash Equilibria 
 

Suppose that in the game of RPS the strategy of Agent 1 is to play rock 40% of the time and paper and 

scissors both 30% of the time. The best response of Agent 2 would then be to play paper 100% of the time. 

However, Agent 1 could then adjust to Agent 2’s new strategy by always playing scissors. At some point, 

they would both realise that to prevent the other player from hard countering their strategy, they should never 

take any action with a relatively high probability. In fact, as previously mentioned, the Nash equilibrium of 

RPS for which neither player is incentivised to deviate from their strategy is to take each action with an equal 

probability of one-third. 

 

A Nash equilibrium 𝜎∗ is a strategy profile where ∀ 𝑖, 𝑢𝑖(𝜎𝑖
′, 𝜎−𝑖

∗ ) = 𝑚𝑎𝑥𝜎𝑖
′𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
∗ ) [10]. More simply, 

∀ 𝑖, 𝜎𝑖 = 𝐵𝑅(𝜎−𝑖), or in other words, every player’s strategy 𝜎𝑖 in 𝜎∗ is a best response to 𝜎−𝑖. 

 

For large games, we typically wish to compute an approximation of a Nash equilibrium or 𝜖 -Nash 

equilibrium defined by some sufficiently small constant 𝜖  where ∀ 𝑖,  𝑢𝑖(𝜎𝑖
′, 𝜎−𝑖

∗ ) + 𝜖 ≥ 𝑚𝑎𝑥𝜎𝑖
′𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
∗ ) 

[13]. 

 

In two-player zero-sum games specifically, there is exactly one Nash equilibrium [11], and provided that the 

game rules do not bias a certain player, each strategy 𝜎𝑖
∗ is essentially unbeatable, and 𝜎∗ is a solution to the 

game itself [9]. The AI systems that have bested top human players in games like chess, Go, and two-player 

no-limit poker have thus far all done so by approximating 𝜎∗ rather than attempting to exploit perceived 

weaknesses in the human opponent’s strategy [9]. 

 

 

2.6 Limitations of Nash Equilibria in Multi-Player Games 
 

For multi-player games which we define as games where |𝒫| > 2, there may be multiple or possibly an 

infinite number of Nash equilibria, none of which are even guaranteed to be a favourable strategy [9, 11]. 

Unlike two-player zero-sum games where an agent 𝑖 may independently compute a Nash equilibrium without 

the cooperation of 𝒫−𝑖, doing so when |𝒫| > 2 may not in fact result in a strategy profile that is a Nash 

equilibrium [9, 11]. 

 

An illustrative example of this is the Lemonade Stand Game [12]. Each player simultaneously sets up a 

lemonade stand along a circle as far away from the other players as possible to avoid business competition. 

In a Nash equilibrium for the game, the players are all evenly spaced apart from one another. Since there are 

an infinite number of ways this can happen, the Nash equilibria for the game are infinite. Notice furthermore 

in the diagram below [12] that if each player independently chooses a position corresponding to a particular 

Nash equilibrium, then the resulting strategy profile may not be a Nash equilibrium. 

 

 



 

Despite this uncertainty of their reliability, in multi-player poker at least, the approximation of Nash 

equilibria has empirically shown strong performance. In 2019, researchers developed the Pluribus agent that 

defeated a group of top professionals in six-player poker for the first time [11]. The main caveat to its 

success was that the agent and its human opponents played every hand using the same chip stack size of 100 

big blinds. In reality, stack sizes in poker become imbalanced as chips are gained and lost, resulting in 

varying optimal strategies that may indeed be quite different. Nevertheless, Pluribus was a milestone 

achievement that demonstrated that Nash equilibria can yet be very effective in practice for multi-player 

games despite the theoretical ambiguity. 

 

 

2.7 Regret Minimization 
 

The term regret, in plain terms, is a measure of how much we regret playing a particular strategy compared 

to playing some alternative strategy. There are different notions of regret depending on the problem domain 

[9]. The one used by state-of-the-art poker AI systems considers an agent 𝑖 playing a sequence of strategies 

from a set of possible strategies 𝒮𝑖 over 𝑇 iterations. An outer loop iterates over 𝒮𝑖 as an inner loop iterates 

over 𝑇. For each alternative strategy 𝜎𝑖
′ ∈ 𝒮𝑖, we measure the difference in utility between 𝜎𝑖

′ and 𝜎𝑖
𝑡. The 

average overall regret of agent 𝑖 after 𝑇 iterations is then given by the following formula [9, 13]: 

 

𝑅𝑖
𝑇 = maxσi

′∈𝒮𝑖

1

𝑇
∑[𝑢𝑖(𝜎𝑖

′, 𝜎−𝑖
𝑡 ) − 𝑢𝑖(𝜎𝑖

𝑡 , 𝜎−𝑖
𝑡 )]

𝑇

𝑡=1

 

 
For two-player zero-sum games, it has been proven that the minimisation of regret for each player 𝑖 such that 

𝑅𝑖
𝑇 ≤ 𝜖 results in an 𝜖-Nash equilibrium [9, 13]. There have been a variety of state-of-the-art algorithms for 

doing this, most of them based on the counterfactual regret minimization (CFR) algorithm first introduced by 

Zinkevich et al [13] in 2007. 

 

 

2.8 Abstraction 
 

As mentioned in section 2.1, there are an estimated 1075 states [7] in two-player no-limit poker alone – an 

intractably large size. We wish to simplify the game to an abstraction of a manageable size, with the hope 

that the utility of each player playing an 𝜖-Nash equilibrium in the simplified game does not differ drastically 

when the same strategy profile is applied to the unabstracted game. Formally, an abstraction for player 𝑖 has 

the following components [14]: 

 

• A partition 𝛼𝑖
𝔗  of {ℎ ∈ ℋ ∶ 𝑃(ℎ) = 𝑖}  for which each set in the partition is a subset of the 

corresponding set in 𝔗𝑖. The elements of 𝛼𝑖
𝔗 are called abstract information sets, and 𝛼𝑖

𝔗 itself is an 

information abstraction. 

• A function 𝛼𝑖
𝐴 on histories such that for each abstract information set 𝐼𝑖

′ ∈ 𝛼𝑖
𝔗, the following holds 

true: ∀ ℎ, ℎ′ ∈ 𝐼𝑖
′, 𝛼𝑖

𝐴(ℎ) ⊆ 𝐴(ℎ) ∧ 𝛼𝑖
𝐴(ℎ) = 𝛼𝑖

𝐴(ℎ′). A set of actions 𝛼𝑖
𝐴(ℎ) is then referred to as an 

action abstraction. 

 

In plain terms, an action abstraction limits the number of actions a player may take at each history. For 

example, in poker we may choose to restrict each player to choosing between 𝑛 number of bet-sizing options. 

Since the size of the game increases exponentially with the cardinality of the set of actions 𝐴(ℎ) [14], this 

alone can have a significant impact. 

 

Information abstraction involves limiting the size of the infosets. In the game of poker, this is done via a 

technique called bucketing [4] whereby we merge hands of equal or similar strategic value. As an example, 

imagine that the board cards are the following: Qd Tc 2c (Queen of diamonds, Ten of clubs, 2 of clubs). It 

makes no difference to us whether we hold either 9h 8h or 9s 8s in this situation since the suits of our hole 

cards do not match that of any card on the board, and we would choose to play the same exact strategy in 



both cases. We may therefore bucket together the histories on this type of board where we were dealt either 

holding and treat them as one individual history. 

 

 

3 System Design and Analysis 
 

The approach taken with the AI system presented here is to have the agent play as closely as possible to an 𝜖-

Nash equilibrium (NE) solution, whenever possible. However, computing an 𝜖-Nash equilibrium is PPAD-

complete in most cases [18], which, on the first and second betting rounds, is very challenging if not 

infeasible to do in real-time within the 14-second timeframe permitted by the third-party external poker 

client software. The agent instead accesses two separate databases of pre-computed NE solutions compiled 

by third parties [19, 20] depending on the public state 𝐾 of the game. When 𝐾 is such that no solution exists 

in either database, the agent then employs a separate decision-making system that uses an opponent model 

combined with formula-based strategies and rules, which is based on the early Billings et al [15] system. The 

entire AI system could be summarised into the following six main components: 

 

• A screen reader that uses computer vision techniques to read relevant information within the game 

window. 

• A state manager responsible for recording all actions and relevant information for each history. 

• An opponent model that predicts a probability vector over an abstracted set of actions 𝛼𝑖
𝐴(ℎ). 

• An NE-based decision maker that issues HTTP requests to retrieve a solution from one of the two 

third-party databases and chooses the most appropriate action 𝑎 ∈ 𝛼𝑖
𝐴(ℎ). 

• A model-based decision maker that uses the opponent model along with formula-based strategies 

and rules. 

• An actor that performs actions by sending keyboard input to the game window. 

 

A diagram depicting the interactions between these components is presented in the appendix (1). 

 

As a research project, the system has not been designed with any target user in mind and it uses a command 

line interface. The following sections detail the inner workings for each of these components. 

 

 

3.1 Reading the Screen 
 

The agent cannot directly access the information pertaining to the state of the game in the third-party poker 

software. One option might be to locate exactly where the software is storing the information in memory, and 

then read from those memory addresses. This however would most likely require much investigation and 

would seemingly be less scalable for use with other external software. The approach taken here is to instead 

process sub-sections of screen images containing the relevant information which are then forwarded to a 

predictive optical character recognition (OCR) model. The screen reader uses the popular open-source OCR 

engine Tesseract [21], the newest version of which is based on LSTM neural networks. 

 

Upon running the application, the screen reader loads a JSON file into memory. This file contains the 

bounding box coordinates for every area of the screen that should be captured. Since it would be tedious to 

create this JSON file manually, a separate module was written to record the bounding boxes based on mouse 

clicks, which draws rectangles on the screen to aid with accuracy. 

 

Before feeding the images to the OCR model, they must first be processed to produce accurate results. 

Tesseract’s results are only reliable when feeding it images of black text on a white background. In addition, 

it often produces inaccurate results when numbers are combined with letters, such as in the below image: 

 

 
 

In the poker client, the sizes of real-money chip stacks and wagers are represented in big blinds, hence the 

text BB following the number. The goal then is to somehow produce an image of a black 9 on a white 



background, with nothing else. Note that the area around the number cannot simply be captured because the 

number is not always in the same exact position, and it may have multiple digits. Observing the image 

closely however, we can notice that the background surrounding the text is a darker shade of green. The 

screen reader exploits this dark-green background using techniques such as thresholding and contour 

detection, which will be further detailed in section 4.1. 

 

To detect where the button is on the screen, the reader uses template matching, whereby it searches for a sub-

image within the captured area of the screen. This technique is also used to detect images such as the back of 

cards, indicating the presence of a player still involved in the hand, or the timebank of a certain player, 

indicating that it is their turn to act. In other cases, such as detecting the card suits, a simpler approach is 

used: since each suit has a unique colour, the reader simply averages the pixels of the card and checks if it 

falls within a certain range. 

 

 

3.2 Managing the Game State 
 

To make decisions, the agent must know what has happened. The state manager runs at one-second intervals, 

recording new information pertaining to the public game state such as the following: the sequence of actions 

that have transpired, the total investments of each player for each round of betting, the pot and stack sizes, 

and the wager amounts. Each player starting from the last active player to the currently active player is 

sequentially examined. If they are no longer in the hand, it means that they folded. Otherwise, we look at the 

money in front of them. If the money is equal to (or less than in the case of a player with little money) the 

size of the last wager, this indicates a call – and otherwise, a raise. 

 

One tricky aspect of this occurs on transitions from one betting round to another. In these cases, the last 

player to act becomes the first player to act on the next round. All the wagers disappear and are added to the 

pot. The speed with which human opponents act also cannot be controlled. For example, it could be possible 

that after the agent makes a bet, two opponents very quickly call and one of them immediately bets on the 

following round, all before the system has a chance to update. The state manager can infer what actions took 

place using an algorithm detailed in section 4.2. 

 

The state manager is moreover responsible for making calls to the appropriate decision-making sub-system 

depending on both the public state 𝐾 and what we will refer to as the assumptive state 𝐾′. We can think of 𝐾′ 

as the result of applying a function to all ℎ ∈ 𝐾 such that every action within ℎ′ ∈ 𝐾′ is a member of an 

action abstraction set 𝛼𝑖
𝐴(ℎ). This is useful because the NE solutions that the agent uses were computed with 

highly abstracted (simplified) actions, and each bet or raise amount must therefore be rounded to the nearest 

amount in the abstraction set. At some point, if the true actions taken in 𝐾 differ substantially from their 

corresponding actions in 𝐾′ , then 𝐾′  becomes unreliable for determining a strategy via the NE-based 

decision maker (in which case the model-based decision maker is used). The reliability of 𝐾′ is measured by 

computing a mean-squared error across all corresponding histories in 𝐾 and 𝐾′ wherein the action taken at 

each history is a bet or raise. To formalise this, let 𝑠 and 𝑠′ be corresponding equal-length sequences of bet or 

raise amounts for every history in 𝐾 and 𝐾′ at which a bet or raise occurred. If 
1

|𝑠|
∑ (𝑠𝑖 − 𝑠𝑖

′)2|𝑠|
𝑖=1 > 𝑐 where 

𝑐 is some threshold constant, then the assumptive state 𝐾′ is considered to be unreliable and is disregarded 

from that point onward in the hand (the model-based decision maker, which is then used, has no notion of 

assumptive state). This reliability is checked after every update of the assumptive state by the NE-based 

decision maker. 

 

 

3.3 Predicting the Opponents’ Actions 
 

A supervised learning model was created using hand history data obtained from the internet. The appendix (2) 

contains one example hand from the dataset. A parser was written to extract a feature vector at each post-flop 

history of the public state. Pre-flop and post-flop are poker-specific terms that respectively refer to the first 

betting round (with no board cards) and any following betting round. The reason why pre-flop hands were 

not considered when developing the model is two-fold. First, the style of play that occurs pre-flop is quite 

different; each player only has two cards, and there are no board cards. Billings et al reported higher 



accuracy for their model when disregarding pre-flop hands [16]. Secondly, being the first betting round, there 

are much fewer states to account for compared to subsequent rounds. As a result, the NE-based decision 

maker is relatively much more robust at resolving pre-flop strategies, seeing as it is much more likely for a 

solution to exist in the pre-flop database compared to the post-flop database. 

 

For each feature vector, there is one of three labels: the current player folded, the current player acted 

passively (checked or called), the current player acted aggressively (bet or raised). The features used are 

provided in the appendix (3). These features were fed through a deep neural network to produce a model that 

can predict a probability vector over the three generic types of actions used as the labels. The AI system uses 

a module dedicated to accessing this model and returning predictions. For example, it may use this to predict 

a probability vector over the generic actions of the next player to act in response to a specific hypothetical 

action taken by the agent. In other cases, we may wish to predict the probability that all remaining opponents 

fold to an aggressive action taken by the agent, which is useful when deciding whether to bluff. This can be 

computed by predicting the fold frequency of each opponent and multiplying them all together. Alternatively, 

we may wish to predict the complement of the probability of all remaining opponents checking following a 

check from the agent, which is the probability that at least one player makes a wager. This is useful when 

deciding how often to check a hand that may be worth betting. The model module copies relevant info from 

the public state and modifies it, each time calling the prediction method for the next opponent. 

 

 

3.4 The NE-Based Decision Maker 

 
This component uses modules that make HTTP requests to third-party servers for NE strategies. Due to 

abstraction, the real wager amounts must be modified to request a valid game tree node. The servers return a 

JSON response containing the strategy for the specific node requested along with its abstracted action set. 

There are two third-party data providers that are used: one for pre-flop and one for post-flop. Notably, for 

post-flop situations, the NE-based decision maker is only used when not more than two players progressed 

past the first betting round. 

 

One issue is that the pre-flop raise actions assumed by the post-flop solutions only include one sizing. The 

approach taken is to strike a balance between choosing an appropriate pre-flop raise amount and choosing 

amounts that are close to the ones assumed by the post-flop solutions. The way this is handled is by using the 

average raise amount over the entire probability distribution of hole cards. Another way to think about this is 

than an extra layer of abstraction is added whereby all raise actions are merged into one (all-in raise actions 

are the only exception to this and are not merged). 

 

Before sending a request to either server, a node path must be constructed using valid actions at each node. 

The sequence of real actions that have occurred in 𝐾 are iterated and the nearest wager amounts are used 

when constructing both the node path and the assumptive state. A cache is maintained that maps node paths 

to corresponding action sets, which is how it can know what actions are available at each intermediary node 

in 𝐾′. In the case that the node path does not exist in the cache, that intermediary node – and all intermediary 

nodes that follow – must be requested before requesting the actual current node of 𝐾′. 
 

Additionally, because these external web-based systems are primarily intended for browser use, an 

authenticated status must be maintained using an HTTP session along with JSON web tokens, as well as 

periodic requests to refresh the access token. 

 

 

3.5 The Model-Based Decision Maker 
 

This component uses the neural network model along with betting and calling formulas and rules to 

determine a best course of action. The first thing it does is to calculate several metrics to be used in each of 

the formulae. Hand strength (𝐻𝑆), hand potential, and effective hand strength (𝐸𝐻𝑆) are all calculated using 

the algorithms documented by Billings in his PhD thesis [4], reproduced here in the appendix (4). Note that 

𝐻𝑆 is afterward raised to the power of |𝒫−𝑖|, the number of remaining opponents, to produce 𝐻𝑆𝑛. There are 

furthermore two types of hand potential: the probability of our hand improving in strength (𝑃𝑃𝑂𝑇), and the 

https://zenith.poker/
https://gtowizard.com/


probability of the hand’s strength decreasing (𝑁𝑃𝑂𝑇). There are moreover two types of effective hand 

strength: one used for betting or raising (𝐸𝐻𝑆𝑣) for value (i.e. with at least a relatively strong hand) and one 

used for calling (𝐸𝐻𝑆𝑐), the formulae for which are as follows: 

 

𝐸𝐻𝑆𝑣 = 𝐻𝑆𝑛 + (1 − 𝐻𝑆𝑛) ∗ 𝑃𝑃𝑂𝑇 

𝐸𝐻𝑆𝑐 = 𝐸𝐻𝑆𝑣 − 𝐻𝑆𝑛 ∗ 𝑁𝑃𝑂𝑇 

 

Whilst it is used by the model-based decision maker to compute EHS values, the notion of hand potential by 

itself is perhaps not the most useful metric. In some cases, the potential of our hand improving may be quite 

low; however, when it does improve, it may improve to a level of hand strength that is extremely high. An 

example of this is a flush or straight draw. In fact, it may often be better to call with these types of draws 

with the chance of winning additional bets on later rounds than to call with marginal hand with higher hand 

potential. The approach taken is therefore to use a metric that will be referred to as nutted hand potential 

(𝑁𝐻𝑃), the chance of improving to a hand for which 𝐻𝑆𝑛 > 𝑘 where 𝑘 is some constant near 1. The 

algorithm to compute 𝑁𝐻𝑃 is presented in section 4.4. 

 

There are believed to be other factors that should affect EHS besides the number of remaining opponents. 

These factors are pot odds, post-flop aggression, and call count. Pot odds (𝑃𝑂) is the amount in the pot 

divided by the amount to call. In the case that no one has bet, the pot odds can be represented as an infinite 

number. Post-flop aggression (𝑃𝐴) will be defined as the number of bets or raises that occurred on any round 

after the first. The call count (𝐶𝐶) is the number of players who called the last bet or raise. Using these 

metrics, the new formulae for EHS values used by the agent are as follows: 

 

𝐸𝐻𝑆𝑣
′ = (𝐸𝐻𝑆𝑣)1+𝑃𝐴+𝐶𝐶∗𝑃𝑂−1

 

𝐸𝐻𝑆𝑐
′ = (𝐸𝐻𝑆𝑐)𝑃𝐴+𝐶𝐶∗𝑃𝑂−1

 

 

A new metric 𝐸𝐻𝑆𝑠 is also used to represent the showdown value of a hand, which is a measure of how much 

the agent would like to show its hand down without bluffing or betting for value: 

 

    𝐸𝐻𝑆𝑠 = (𝐸𝐻𝑆𝑣)1+𝑃𝐴 

 

𝐸𝐻𝑆𝑣
′  is compared to a constant 𝑘𝑣 to determine whether the hand can be bet for value. If it can, then the 

hand’s worth is determined by linearly interpolating 𝐸𝐻𝑆𝑣
′  from the interval [𝑘𝑣 , 1] to the interval [𝑤0, 𝑤𝑛] 

where 𝑤0 and 𝑤𝑛 are the smallest and largest wager amounts in the action set. The worth represents how 

much the agent is willing to bet and is rounded to 𝑤𝑣, the nearest amount in 𝑤. Wager amounts in 𝑤 are then 

iteratively tested up to 𝑤𝑣, computing an expected value (EV) for each of them based on how frequently the 

model predicts the opponent(s) will fold. The highest EV wager amount is then selected. 

 

In the case of calling, the 𝑘 value, 𝑘𝑐, is no longer constant; it is determined by fitting 𝑃𝑂 to a non-linear 

function. The function 𝑓(𝑥) = (𝑥 − 10)−2 is used, which is based on an upper bound of 20 set for 𝑃𝑂 and 

was found through experimentation. Additionally, the formula 𝐸𝑉𝑐 = 𝑅𝑃 ∗ 𝑁𝐻𝑃 − 𝐶𝐴(1 − 𝑁𝐻𝑃) is used to 

estimate the expected value of calling with nutted hand potential. If either 𝐸𝐻𝑆𝑐
′ > 𝑘𝑐 or 𝐸𝑉𝑐 > 0, then the 

agent considers its hand to be a profitable call. 

 

When considering whether to bluff, the agent considers the predicted success rate 𝑆𝑅 of bluffing, which is 

the probability that all remaining opponents fold. Let 𝑅𝑃 be the size of the raked pot (the slightly reduced pot 

size that accounts for rake, which is the percentage taken by the poker room as a game host fee), and let 𝑃𝐼𝑃 

be the additional amount that we put into the pot as a result of betting or raising to some percentage of the 

pot 𝑤𝑏. We can estimate the EV of bluffing on the flop or turn (the second or third betting rounds) as follows: 

 

𝐸𝑉𝑏 = 𝑅𝑃 ∗ 𝑆𝑅 + (1 − 𝑆𝑅)(𝑅𝑃 ∗ 𝑁𝐻𝑃 − 𝑃𝐼𝑃(1 − 𝑁𝐻𝑃)) 

 

Note that 𝑁𝐻𝑃 is undefined on the river (the final betting round), but in that case, 𝐸𝑉𝑏 can be calculated 

more simply as 𝑅𝑃 ∗ 𝑆𝑅 − 𝑃𝐼𝑃(1 − 𝑆𝑅). 

 

 



3.6 Performing Actions 

 
The actor component randomly samples an action from the strategy returned by either of the two decision 

makers. The action is then performed within the poker client using keyboard input. Wager amounts in 

increments of 5% of the pot are mapped to hotkeys that were set up within the poker client, and the hotkey 

for the nearest increment is used. The actor may wait a random amount of time before performing an action. 

Note that the keypress duration for a human is typically between 50 and 300 milliseconds [19]. After 

initiating a keypress, the actor attempts to imitate this human behaviour by waiting some random number of 

milliseconds within that range before releasing the key. 

 

 

4 Implementation 

 

The poker AI system has been implemented using the Python programming language, along with open-

source libraries such as Tesseract and OpenCV for the screen reader, and TensorFlow for the opponent model. 

Following sub-sections contain some noteworthy implementation details and algorithms. 

 

4.1 Reading Wagers: Image Processing Pipeline 
 

By thresholding an image using a range of pixel values, a binary mask of the image is produced. From that 

binary pixel array, using the OpenCV library [22], the bounding boxes for the contours of the area of the 

dark-green region as well as that of the first B in a wager image can be detected. 

 

 
 

The resulting image is then passed to Tesseract’s OCR model. This process differs depending on the type of 

element on the screen to be read, but reading the wager is the most involved. 

 

 

4.2 Inferring Past Actions 

 
Supposing that the state manager updates on the following two consecutive frames, it can infer the correct 

sequence of actions that has occurred so far in the hand: 

 

  

https://github.com/tesseract-ocr/tesseract
https://github.com/opencv/opencv
https://www.tensorflow.org/


In other words, with only two frames, it can know that all players before the small blind player folded, the 

small blind player raised, the big blind player re-raised, the small blind player called and then checked on the 

flop (the next round). To infer actions that occurred between betting rounds, it uses the following algorithm: 

 
function UpdateLastRoundActions: 

 # Handle cases where the remaining players checked or folded 

 if last unraked pot recorded >= current raked pot: 

  for each player from the last active to the currently active: 

   if the player is in the hand: 

    if there is no recorded action for the player on the last round: 

     UpdateState(player, "check") 

   else: 

    UpdateState(player, "fold") 

  # Nothing further to consider, so just return 

  return 

 

 remaining = list()  # This will store any remaining players to account for 

 actions = dict()  # A map of players to actions 

 for each player from the last active to the currently active: 

  if the player is in the hand: 

   remaining.append(player) 

  else: 

   actions[player] := (player, "fold") 

 

 # Handle cases where any remaining players called 

 total := last recorded unraked pot 

 if there is any recorded wager: 

  for player in remaining: 

   total += player's recorded investment on the last round 

 

# If, by adding to the prior-round investments of the remaining players to match the prior-round last wager, we can equal or 

# exceed the raked pot, then we can assume that any remaining players whose prior-round investment was lower than the last 

# wager had called 

 if total >= raked pot: 

  for player in remaining: 

   if player's prior-round investment = last wager: 

    break 

   actions[player] = (player, "call", last wager) 

 else: 

  # The agent is assumed to have bet or raised 

  unrakedPot := min(rakedPot plus rake cap, rakedPot / (1 - rake)) 

  inv := total investments of all remaining players for the last round 

  wager := (unrakedPot - last unraked pot + inv) / length(remaining) 

  actionString := "bet" if no last wager else "raise" 

  actions[agent] = (agent, actionString, wager) 

  remaining.pop(0)  # Remove the agent 

  for player in remaining: 

   actions[player] = (player, "call", wager) 

 

 # ensure that actions are added in the proper order 

 for each player from the last active to the currently active: 

  if player in actions: 

   UpdateState(action[player]) 

 

 

4.3 Training the Opponent Model 
 

The parser processed roughly five million poker hands in text format like the example in the appendix (2). 

Features of the post-flop game state for every non-terminal node were appended to a CSV file which was 

later converted to a Numpy feature matrix. All columns of the matrix were normalised to the interval [0, 1] 

using one of two techniques. Min-max normalisation was used for columns whose values fall within a certain 

range. That is to say, the function 𝑓(𝑥) =
𝑥−𝑥0

𝑥𝑛−𝑥0
 was applied to each element of the column, with 𝑥0 and 𝑥𝑛 

being the min and max of the range of possible values of the feature. For a few of the features whose values 

could theoretically be unbounded (e.g. the stack to pot ratio) the function 𝑓(𝑥) =
𝑥

1+𝑥
 was used. 

 

The feature vectors in the matrix totalled roughly 26.2 million, and the data was shuffled and split using 80% 

for training, 10% for validation, and 10% for testing. The size of the input layer – or the number of features – 

was 18, and four densely connected hidden layers were used, as can be seen in the model architecture below: 

 

 



The length of the output layer, which is 3, corresponds to the number of labels. This is because the output is a 

probability vector over these labels. The loss function used was categorical cross-entropy, which measures 

the distance between probability distributions. Other hyperparameters used are presented in the table below: 

 

Hidden layer activation function ReLU 
Last layer activation function Softmax 
Optimizer RMSProp 
Learning rate 0.005 
Batch size 214 

 

Hyperparameter tuning largely involved experimenting with the learning rate and the batch size. 

Regularization was briefly toyed with, but it did not appear to be useful, perhaps due to the very large size of 

the dataset. 

 

 

4.4 Model-Based Decision-Making Algorithms 
 

The algorithm to compute nutted hand potential is presented below: 

 
function NuttedHandPotential(CARDS holeCards, CARDS boardCards, INT numOpponents, FLOAT k) -> NULL or FLOAT: 

 if length(boardCards) = 5: 

  return NULL 

 

 # remove known cards from the deck 

 SET deck := copy(_DECK_) 

 for card in holeCards + boardCards: 

  deck.remove(card) 

 

 INT nutted := 0 

 INT total := 0 

 

 # consider all possible combinations of board runouts 

 for CARDS combo in Combinations(deck, 5 - length(boardCards)): 

  for card in combo: 

   deck.remove(card) 

  CARDS board := boardCards + runout 

  FLOAT handStrength := HandStrength(holeCards, board, numOpponents, deck) 

  for card in combo: 

   deck.add(card) 

  total += 1 

  if handStrength > k: 

   nutted += 1 

 

 return nutted / total 

 

Note that the algorithm is computation intensive on the flop. It makes calls to the implementation of Billings 

et al’s HandStrength algorithm, which compares the agent’s hole cards to every possible pair of cards that the 

opponent may hold. HandStrength, in turn, makes calls to a Rank function, which, given a list of cards, finds 

the best five-card hand and outputs an integer such that stronger hands receive a higher value and hands of 

equal strength receive the same value. For the Rank function, the open source eval7 poker library is used. 

Rank must be called (47
2 )(45

2 ) + (47
2 ) = 1,071,271 times on the flop, which takes roughly 6.5 seconds with 

Python. The algorithm can however be easily modified to consider only the very next card to come, resulting 

in only 47(46
2 ) + 47 = 48,692 calls to Rank on the flop. A default value for 𝑘 of 0.955 is used. 

 

Below is the general algorithm that the model-based decision maker uses to determine a strategy: 

 
function Make(state) -> LIST<TUPLE>: 

 if the round is pre-flop: 

  return MakePre(state) 

 

 metrics := GetMetrics(state) 

 unopened := True if no one bet yet else False 

 

 # Check to pre-flop aggressor on flop when acting before 

 if unopened AND Agent acts before last aggressor AND round = flop: 

  return [("Check", 1)]  # Check with 100% probability 

 

 valuePct := GetValuePct(state)  # The percentage of pot to be bet or raised 

 if valuePct > 0: 

  if unopened: 

   if Agent is not last to act: 

    checkGetsAction := 1 - Model.predictAllCheck(state) 

    return [("Check", checkGetsAction), ("Bet", 1 - checkGetsAction, valuePct)] 

   else: 

    return [("Bet", 1, valuePct)]  # Bet with 100% probability 

  else: 

   return [("Raise", 1, valuePct)] 

 

https://github.com/julianandrews/pyeval7


 if not unopened and CanCall(state): 

  return [("Call", 1)] 

 

 bluffPct := GetBluffPct(state)  # The percentage of pot to be bluffed 

 if bluffPct > 0: 

  if unopened: 

   return [("Bet", 1, bluffPct)] 

  else: 

   return [("Raise", 1, bluffPct)] 

 

 if unopened: 

  return [("Check", 1)] 

 

 return [("Fold", 1)] 

 

The function MakePre is infrequently used, because the NE-based decision maker is usually quite competent 

with resolving a pre-flop strategy. If MakePre does need to be used, the strategy is quite a simple one that is 

based on how many raises occurred and how strong the hole cards are. The functions GetValuePct and 

GetBluffPct use the ideas and formulae discussed in section 3.5 to determine what percentage of the pot 

should be wagered, whereas CanCall uses them to return a Boolean. 

 

 

5 Evaluation 

 

The opponent model was evaluated separately from the AI system. The metrics of categorical cross-entropy, 

precision, and recall were used for model evaluation. To evaluate the AI system as a whole, the bot was 

tested at the lowest stakes available within the poker client. 

 

 

5.1 Evaluating the Opponent Model 
 

As mentioned previously, the three labels used by the classifier involve folding, acting passively (checking or 

calling), and acting aggressively (betting or raising), which will be referred to as F, C, and R respectively. 

The distribution of actions in the dataset was as follows: 

 
F 16.8% 

C 57.6% 

R 25.7% 

 

Due to the imbalanced nature of the dataset, accuracy could not be relied on as an evaluation metric. Instead, 

the metrics of precision and recall were both used in addition to categorical cross-entropy (the loss). 

 

It was reasoned that a classifier predicting each label with a probability corresponding to its frequency in the 

dataset would serve as a useful baseline for comparison. The table below shows the results of the baseline 

classifier on the test set. Note that the loss is inversely proportional to the model’s performance, with a 

higher value indicating worse performance. 

 
Baseline Loss 96.7% 

Baseline Precision 42.5% 

Baseline Recall 42.5% 

 

The trained model was unable to be overfit. One reason that this may be is that there was already a high 

degree of linear separability in the data. In fact, even when using zero hidden layers, the validation loss on 

the best epoch was not much worse than it was with the architecture of four densely connected layers that 

was later adopted – suggesting this to be the case. When using zero hidden layers, it achieved loss, precision 

and recall scores of 68.8%, 66.0% and 61.7% respectively. Another reason may be due to the nature of the 

classification problem, which is also a reason why precision and recall themselves are not fully 

representative of the model’s performance. 

 

 

 

 

 



 

5.1.1 Limitations of Precision and Recall 
 

For a multi-class supervised learning task, what are we trying to predict? We are trying to predict a single 

solitary label: for example, whether an image is of a lion, a tiger, or a bear, given that only one animal is 

present in each image. In a multi-label supervised learning task, there may be multiple animals present in 

each image, and so we wish to predict one or more labels for each image. The classification task being dealt 

with in this report, however, does not fit neatly into either of these two categories. What the opponent model 

actually predicts is not a subset of labels, but rather a probability distribution over all the labels: i.e., how 

often is the average opponent expected to perform each type of action? Moreover, it is unclear what a target 

probability distribution should be. It is only known that the human player performed a certain action; the 

player’s strategy itself is unknown. 

 

To make this limitation clearer, imagine that the average player’s true strategy at a certain history is to fold 

40% of the time, check or call 55%, and bet or raise 5%. The probability vector for this distribution is 

[0.4, 0.55, 0.05]. Suppose that the classifier predicts a probability vector of [0.05, 0.55, 0.4]. This would 

indeed correctly predict the highest probability label of C, but it may not be very useful. The knowledge that 

the average player folds with 40% frequency in this situation could be quite beneficial, for example, if the 

pot odds are such that 40% is a high number. 

 

 

5.1.2 Final Model Results 
 

Despite the limitations discussed above, the multi-class precision and recall scores, when compared to the 

baseline results, does at least give some sense of the model’s performance, and were thus included as 

evaluation metrics. The results of the final trained model on the test set can be seen below: 

 
Model Loss 65.7% 

Model Precision 68.7% 

Model Recall 64.5% 

 

The best metric for evaluation is ultimately the categorical cross-entropy loss function itself, which measures 

the error of the probability distribution returned by the last-layer Softmax activation function. The final 

model showed a reduction of 32.1% in loss from that of the baseline classifier. 

 

 

5.2 Evaluating the Agent’s Performance 
 

The agent was evaluated by having it play the lowest real-money stakes offered within the poker client, i.e. 

2-cent big blind games (USD currency). The results, which were obtained by parsing the hand history text 

files generated by the poker client, are presented below: 

 
Hands played 847 

Net won (BB) 32 

Rake Paid (BB) 43 

Net won (USD) 0.64 

Rake paid (USD) 0.86 

Raked win-rate (BB per 100 hands) 0.08 

Unraked win-rate (BB per 100 hands) 0.18 

 

The agent made a very small profit of 0.64 USD, or 32 big blinds. This is a statistically meaningless result 

over only 847 hands. If we assume that the agent’s true win-rate is 0.08 BB/100, and assuming that the 

standard deviation of a six-player no-limit poker win-rate is 90 BB/100 as reported here, then, using a 

confidence level of 95%, the margin of error for net winnings after only 847 hands is ±524 BB. The agent 

would need to play very many more hands to make any kind of conclusion about its overall performance. 

Unfortunately, time did not permit that to happen. 

https://poker.stackexchange.com/questions/373/optimal-win-rate-standard-deviation


 

 

6 Conclusions and Remarks 
 

Although no conclusion can be made regarding the agent’s overall performance, it could be argued that the 

creation of a poker AI system that can make decisions which at least seem reasonable is not an insignificant 

task, particularly when its decisions must essentially be based on images generated by external software. To 

that end, this project combined knowledge from a few different areas such as machine learning, computer 

vision, game theory, and web-based systems. It was moreover observed that supervised learning can be a 

useful method of predicting probability distributions over a set of labels. 

 

 

6.1 Further Work 
 

Through the combined use of information abstraction and supervised learning, the agent could likely be 

improved with an additional model that predicts a probability distribution over an opponent’s likely hole 

cards [4]. The categorisation of opponents based on observed actions should also be considered, whereby 

each class of opponent could have its own model [17]. Playing out a subgame through Monte Carlo 

simulation may also enable more accurate estimations for the expected value of actions [17]. Moreover, 

when facing a bet or raise, the NE-based decision maker could be improved by requesting the nodes for the 

nearest two wager amounts in the abstracted action set and interpolating them based on the true wager 

amount. 

 

 

6.2 Code Availability 
 

All source code for this project is available in the following Github repository: 

 

https://github.com/eicksl/cm3070 

 

To set up the agent, first decompress the README.zip file and then follow the instructions therein. 

 

 

6.3 Statement on Ethics and Impact 
 

In the realm of financial markets, automation through the use of trading algorithms is often encouraged. In 

the poker-playing community however, it is not well-embraced, most likely due to the zero-sum nature of the 

game. Additionally, whilst there are no legal issues with running a poker bot, the use of automated decision-

making software may be in violation of the poker room’s terms of service, depending on the company. With 

these issues in mind, the evaluation approach taken here should be reconsidered. To prevent potential abuse, 

the source code repository will be made private after a final mark has been released. Whilst the code does 

remain public, the readme file has been compressed to limit search engines from leading unwanted traffic to 

the repository. 
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Appendix 

 

 

1 System Architecture Diagram 

 

 
 

 

2 Example Hand from Dataset 

 
PokerStars Hand #233578654693:  Hold'em No Limit ($0.01/$0.02 USD) - 2022/01/29 23:39:42 ET 

Table 'Aaltje III' 6-max Seat #6 is the button 

Seat 1: Martin-NH14 ($3.14 in chips)  

Seat 2: jsvh55 ($2.17 in chips)  

Seat 3: galamtor ($1.37 in chips)  

Seat 4: TracyTheNuts ($2.39 in chips)  

Seat 5: mangalisa ($2.23 in chips)  

Seat 6: Rez9I ($2.15 in chips)  

Martin-NH14: posts small blind $0.01 

jsvh55: posts big blind $0.02 

*** HOLE CARDS *** 

galamtor: calls $0.02 

TracyTheNuts: raises $0.04 to $0.06 

mangalisa: calls $0.06 

Rez9I: calls $0.06 

Martin-NH14: folds  

jsvh55: calls $0.04 

galamtor: calls $0.04 

*** FLOP *** [Th 5s Jc] 

jsvh55: checks  

galamtor: checks  

TracyTheNuts: checks  

mangalisa: checks  

Rez9I: checks  

*** TURN *** [Th 5s Jc] [Qh] 

jsvh55: checks  

galamtor: checks  

TracyTheNuts: bets $0.21 

mangalisa: folds  

Rez9I: calls $0.21 

jsvh55: folds  



galamtor: calls $0.21 

*** RIVER *** [Th 5s Jc Qh] [3c] 

galamtor: checks  

TracyTheNuts: checks  

Rez9I: checks  

*** SHOW DOWN *** 

galamtor: shows [8d Jd] (a pair of Jacks) 

TracyTheNuts: shows [Qs Ah] (a pair of Queens) 

Rez9I: mucks hand  

TracyTheNuts collected $0.91 from pot 

*** SUMMARY *** 

Total pot $0.94 | Rake $0.03  

Board [Th 5s Jc Qh 3c] 

Seat 1: Martin-NH14 (small blind) folded before Flop 

Seat 2: jsvh55 (big blind) folded on the Turn 

Seat 3: galamtor showed [8d Jd] and lost with a pair of Jacks 

Seat 4: TracyTheNuts showed [Qs Ah] and won ($0.91) with a pair of Queens 

Seat 5: mangalisa folded on the Turn 

Seat 6: Rez9I (button) mucked 
 

 

3 Features 

 

Feature Datatype Description 

Round Integer Betting round 

HighCard Integer Highest card on the board 

AverageRank Float Rank of the average card on the board 

FlushPossible Boolean Flush is possible 

BoardPaired Boolean Board is paired 

HasFour Boolean Board has four to a straight or four to a flush 

LC3Flush Boolean The last board card brought three to a flush 

LC4Flush Boolean The last board card brought four to a flush 

LC4Straight Boolean The last board card brought four to a straight 

LCOvercard Boolean The last board card is of the highest rank 

PlayerAggression Float 
(1 + 𝑅)/(1 + 𝐶)  where 𝑅  is the total bets or raises of 
player to act and 𝐶 is the total checks or calls 

OpponentAggression Float 
(1 + 𝑅)/(1 + 𝐶) where 𝑅 is the total bets or raises of the 
last aggressor and 𝐶 is the total checks or calls 

NumAggCurrentRound Integer Number of total bets or raises on the current round 

IsLastAggressor Boolean Player to act is the last aggressor 

SPR Float Ratio of player’s stack to the pot size 

AmountToCall Float Amount to call (zero if no one bet) 

NumPlayers Integer Number of players in the hand 

RelativePosition Float 
A measure of a player’s position relative to the button, 
such that 0 is assigned to the first player to act and 1 is 
assigned to the player nearest to the button 

 

 

 

 

 

 

 

 



4 Hand Strength and Potential: Algorithms of Billings et al 

 

 
 

 
 


