
Midterm

December 21, 2021

1 Sentiment Analysis of Film Reviews
This report will document the process of developing a binary classifier for sentiment analysis across
a dataset of film reviews.

1.1 Introduction
1.1.1 Overview of Sentiment Analysis for Product and Service Reviews

Nowadays it is well-known that online product and service reviews have become extremely impor-
tant, not only in the e-commerce industry, but for any type of business generally. Through a variety
of platforms such as Google, Amazon, Yelp, etc, customers are able to express their opinions of any
product or service in the form of reviews. Users who browse through these products and services
very often rely on these reviews to make their purchasing decisions.

Natural language processing allows businesses and entrepreneurs to assess unstructured product
reviews via sentiment analysis, which can be useful for “showcasing examination, advertising, item
surveys, net advertiser scoring, item input, and client administration”. [1] Sentiment analysis is a
form of text classification that aims to determine attitudes or opinions within text. It is sometimes
also called opinion mining. [1]

Possible attributes that may be extracted from product reviews are the polarity of the review
(i.e. whether it is positive or negative), the subject of the review, and the opinion holder or
author of the review. [1] Additionally, some work has been done on extracting use cases from
reviews (i.e. what the customer used the product for). [2]

We may strive to distinguish facts from opinions within reviews. [1] Opinions moreover can be cat-
egorised into two separate classes: direct and comparative. [1] Direct opinions are straightforward
statements of opinion, e.g. “This product is bad”. [1] A comparative opinion would be something
like “This product is better than the one offered by [some brand]”. [1]

Sentiment analysis can be applied not only at the document level (i.e. the review as a whole); we
can examine the sentiment of individual sentences, or even the clauses or words within a sentence.
[1] Additionally we may aim to detect emotions within the review such as happiness, anger, or
disappointment. [1] A variety of classification algorithms may be used such as naive Bayes, logistic
regression, support vector machines, neural networks, etc. [1]

1.1.2 Objectives

As mentioned before, the objective is the development of a classifier for film reviews. Here I will
only look at the polarity of the review to determine whether it is positive or negative. Since there

1

will only be two classes (positive and negative), we can consider this to be a binary classification
problem.

On websites such as Amazon and Google, the polarity of the review is very often already indicated
by the user in the form of some kind of rating, e.g. a star rating from 1 to 5. Still, some users will
inevitably leave a review without rating the product if the rating portion of the review is optional.
Additionally we must consider the vast amount of unstructured [1] product opinions on the internet
outside of these platforms, for example in blog posts or social media.

Suppose then that a company wants to know how its product is being discussed on these other
unstructured mediums. They must first determine whether the social media or blog post relates
to the product, i.e. the subject of the text. Since the dataset I will be using is comprised of only
film reviews, I do not need to consider this. However, it is worth noting that this would be very
important if we were opinion mining over unstructured data. The second phase is the determination
of the polarity of the text, and this is what this report will focus on. To this end, I will be using the
following techniques which will be discussed in more detail in future sections: stemming, regular
expressions, negation handling, TF-IDF text representation, and multinomial naive Bayes.

1.1.3 Dataset

I will be using the IMDB dataset offered by Stanford University, a large dataset of 50,000 polarized
movie reviews that was used in their 2011 research paper Learning Word Vectors for Sentiment
Analysis. They state that the dataset is symmetrically comprised of 25,000 negative reviews and
25,000 positive reviews, and that the negative reviews were rated 1-4 stars while the positive reviews
were rated 7-10 stars. Reviews with ratings of 5 or 6 stars were ignored when compiling the dataset.
For any given film, at most 30 reviews are included in the dataset. This is to prevent the dataset
from being biased toward particular films. [3]

In regard to its structure, the dataset contains two columns of whose data types are strings: a
review column which is the text of the review and a sentiment column whose values are either
the string positive or the string negative.

Let us now read in the CSV file and take a look at the first few rows of the dataset:

[16]: import pandas as pd

I will be using df as an acronym for a pandas dataframe
df_large = pd.read_csv('data/imdb-reviews.csv')
df_large.head()

[16]: review sentiment
0 One of the other reviewers has mentioned that … positive
1 A wonderful little production.

The… positive
2 I thought this was a wonderful way to spend ti… positive
3 Basically there's a family where a little boy … negative
4 Petter Mattei's "Love in the Time of Money" is… positive

We can note from the above data that some HTML and unnecessary whitespace is present in
the review data which we may need to consider when doing the preprocessing. Moreover, due to
memory constraints, I will only be using 20% of the dataset, i.e. 10,000 rows.

2

https://ai.stanford.edu/~amaas/data/sentiment
https://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf
https://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf

1.1.4 Evaluation Methodology

Since I am building and training only one model that is not terribly complicated, it should be
straightforward to use an extrinsic evaluation approach. If, for example, I were building a very
complicated model that takes a long time to train and wanted to compare various models or factors
within one model, an instrinsic evaluation approach such as perplexity might be preferable.

As extrinsic evaluation measures the performance of the model, I must decide what sort of perfor-
mance metric will be used. Because I am dealing with a perfectly symmetric dataset (50% positive
reviews and 50% negative reviews), using accuracy alone should suffice. To measure the acccuracy
of the model, I can first calculate a confusion matrix like the one below.

Image source: Wikipedia

The values along the diagnal of the matrix are correct predictions: a TP is a correct prediction of
positive where as a TN is a correct prediction of negative. An FP is an incorrect prediction of
positive, and an FN is an incorrect prediction of negative. Using these values, the accuracy of
the model can be calculated via the following formula:

(TP + TN) / (TP + TN + FP + FN)

Oftentimes, however, we will not be working with a symmetric dataset such as this one. In these
cases, accuracy is usually not a favorable metric to use. Consider a case where we are searching
through 10,000 social media posts and wish to identify whether or not these posts relate to a
certain product. Assume further that only 500 of these posts actually relate to the product. A
simple baseline classifier that predicts negative 100% of the time would achieve an accuracy of

3

https://en.wikipedia.org/wiki/Confusion_matrix

95%. Under these conditions, we should consider other performance metrics such as precision,
recall, and F-measure. [4]

With that being said, accuracy alone should be sufficient for our purposes.

1.2 Implementation
1.2.1 Pre-Processing

I have already read the CSV data into a Pandas dataframe stored in the variable df_large. First
I will import the re and nltk libraries and download the stopwords. I will also confirm that the
number of rows totals 50,000.

[17]: import re
import nltk

uncomment to download stopwords
nltk.download('stopwords')

check length
len(df_large)

[17]: 50000

Let’s also confirm that there are 25,000 positive reviews and 25,000 negative reviews.

[18]: positive_reviews = 0
negative_reviews = 0
for i in range(len(df_large)):

if df_large['sentiment'][i] == 'positive':
positive_reviews += 1

elif df_large['sentiment'][i] == 'negative':
negative_reviews += 1

positive_reviews == negative_reviews == 25000

[18]: True

Confirm that there are no null values.

[19]: import numpy as np
result = np.where(pd.isnull(df_large))
result[0].size == result[1].size == 0

[19]: True

Confirm that there are no empty string values.

[20]: result = np.where(df_large.applymap(lambda x: x == ''))
result[0].size == result[1].size == 0

4

[20]: True

Sort the data by the sentiment column.

[21]: df = df_large.sort_values('sentiment')

As mentioned before, I will only use 20% of the dataset. Take the first 5000 negative reviews and
the last 5000 positive reviews and concatenate them into one dataframe.

[22]: df = df[:5000].append(df[-5000:])
len(df)

[22]: 10000

Now reorder the indices of the resulting dataframe.

[23]: df.index = pd.RangeIndex(len(df.index))

Let’s take a look at the first review in its entirety.

[24]: df['review'][0]

[24]: 'This film should have never been made. Honestly, I must admit that before I saw
it I had some serious doubts. The director is not a great actress, though she
did a lot of movies in Holland, and the young woman who took the main part is a
TV-personality with a constant smile on the face and not much self-criticism.
The actor who played the other main part I recently saw in Bride Flight and
although that film is better, he did not convince me than. To start with the the
story, I have not read the novel it is based upon, but the script that underlays
the film is something that might have been done with in mind kids having a
birthday party on a rainy Sunday afternoon, not someone of the same age as the
director who likes to watch a good movie. Something really disturbing were the
overdubbed dialogues, it was most of the time spoken out loud. My regards go to
the cameraman, at least he tried to make something out of it. It is a pity that
the film is edited lousy, if not, some scenes were certainly more credible.'

I will use stemming and forego lemmatization. Stemming is faster and using lemmaization often
shows little to no improvement. I would use lemmaization if I needed to produce readable text.
For text classification, stemming is often good enough.

Additionally I will add the string br to the stopwords to account for those HTML break tags, and
I will moreover convert the stopwords list to a set for constant-time look-ups.

[25]: from nltk.corpus import stopwords as nltk_stopwords
from nltk.stem.porter import PorterStemmer

stopwords = set(nltk_stopwords.words('english') + ['br'])
stemmer = PorterStemmer()

5

I will now define a function that will essentially process the words within clauses. It will take a list
of words found within a clause as input and output a new processed list of words. This will handle
stemming and negation and moreover ignore stopwords.

[26]: def get_processed_words(words):
processed_words = []
has_not = False # True if the clause contains the word 'not'
for word in words:

if the string is 'not' then we ignore it but indicate that it was
found in the clause
if word == 'not':

has_not = True
continue

otherwise if it is a stopword, we just ignore it
elif word in stopwords:

continue
at this point the string is neither 'not' nor a stopword so we stem it
word = stemmer.stem(word)
if the word 'not' was found earlier, we need to prefix the stem
with 'NOT_'
if has_not:

processed_words.append('NOT_' + word)
otherwise just append it to the processed list of words
else:

processed_words.append(word)
return processed_words

At the individual review level, I will process the document clause by clause. The reasoning for this
is that I want to prefix words within a clause following the word not with NOT_.

[27]: def get_processed_review(clauses):
processed_review = []
for clause in clauses:

words = clause.split() # split on whitespace
has_not = False # True if the clause contains the word 'not'
processed_words = get_processed_words(words)
processed_review += processed_words

return processed_review

Now the main function process_reviews will iterate over the dataframe, removing unwanted
characters which has the effect of tokenization, and splitting the review into clauses via regular
expressions and then making calls to get_processed_review to handle further processing at the
sub-sentence level.

[28]: def process_reviews(dataframe):
processed_reviews = []
for i in range(len(dataframe)):

replace non-letters and non-punctuation with a space

6

review = re.sub('[^a-zA-Z\.,;:]', ' ', df['review'][i])
convert to lowercase
review = review.lower()
split on punctuation
clauses = re.split('[\.,;:]', review)
processed_review = get_processed_review(clauses)
join the list using spaces and add the resulting string to the list
of processed reviews
processed_reviews.append(' '.join(processed_review))

return processed_reviews

Let’s now run the pre-processing algorithm and see what the first review looks like afterward.

[29]: corpus = process_reviews(df)
corpus[0]

[29]: 'film never made honestli must admit saw seriou doubt director NOT_great
NOT_actress though lot movi holland young woman took main part tv person
constant smile face NOT_much NOT_self NOT_critic actor play main part recent saw
bride flight although film better NOT_convinc start stori NOT_read NOT_novel
NOT_base NOT_upon script underlay film someth might done mind kid birthday parti
raini sunday afternoon NOT_someon NOT_age NOT_director NOT_like NOT_watch
NOT_good NOT_movi someth realli disturb overdub dialogu time spoken loud regard
go cameraman least tri make someth piti film edit lousi scene certainli credibl'

I will be using a TF-IDF matrix for the text representation which is considered to be an improvement
on the bag of words representation, for it gives more semantic meaning or importance to more
frequent words in the corpus that are not stopwords.

TF stands for term frequency and IDF is inverse document frequency. The column vectors of the
TF-IDF matrix represent documents or reviews in this case, where as the row vectors represent
the vocabulary. TF is the frequency of a word in the document, while IDF is calculated as the log
of the number of documents divided by the number of documents that contain a particular word.
Each element of the TF-IDF matrix is the product of the TF and the IDF.

Note that the model may be improved by using n-grams in the TF-IDF matrix. We could for exam-
ple use bigrams by passing the tuple (1, 2) to the ngram_range argument of TfidfVectorizer.
Due to memory contraints however I will only be using unigrams.

Furthermore, because this is a binary classification task, the algorithm can be made more efficient
by remapping the set of labels {'negative', 'positive'} to the boolean set {0, 1}.

[30]: from sklearn.feature_extraction.text import TfidfVectorizer

create the TF-IDF matrix
vectorizer = TfidfVectorizer(ngram_range=(1, 1))
tfidf_matrix = vectorizer.fit_transform(corpus).toarray()

remap the sentiment labels to boolean values

7

labels = df['sentiment'].apply(
lambda x: 0 if x[0] == 'n' else 1

).to_numpy(dtype=np.uint8)

1.2.2 Baseline Performance

I am working with a symmetric dataset that is evenly split between positive and negative reviews.
Although the test set may not necessarily be evenly split, it will be evenly split on average if shuffling
the documents in the corpus appropriately. Thus, a baseline classifier that randomly predicts
positive with 50% probability and negative with 50% probability will achieve an accuracy of
50% on average. The accuracy of the model must therefore exceed 50%.

1.2.3 Classification Approach

I will use the naive Bayes classification approach as it is known to work well for text classification
and is quite fast both for training and prediction. Naive Bayes makes the assumption that all
features - i.e. words or n-grams in our case - are conditionally independent of one another, although
this assumption is bound to introduce a certain degree of bias since it is never true with languages.
[4] Nevertheless, in practice naive Bayes tends to work quite well.

The algorithm is an optimization problem where we iterate over the set of labels ({0, 1} in our
case) and perform the calculation below to determine which label (or class) maximizes the right-
hand side of the equation.

Note that Ck represents a particular class and xi represents a particular feature.

Oftentimes the algorithm can be improved by capping the feature counts at 1 for each document.
This approach is known as multinomial naive Bayes. As mentioned in the scikit-learn documen-
tation, although theoretically multinomial naive Bayes expects discrete feature counts (i.e. bag of
words without TF-IDF), in practice it does also work with continuous feature values such as those
in TF-IDF.

[31]: from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB

reviews_train, reviews_test, labels_train, labels_test = train_test_split(
tfidf_matrix, labels, test_size=0.2, random_state=1

)

model = MultinomialNB().fit(reviews_train, labels_train)
labels_pred = model.predict(reviews_test)

8

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

1.3 Conclusions
1.3.1 Evaluation

The classifier’s performance may now be evaluated by comparing its predictions with the true labels
in the test set. As discussed previously, calculating a confusion matrix will aid us in determining
the accuracy.

[32]: import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix

get confusion matrix
c_matrix = confusion_matrix(labels_test, labels_pred)

plot confusion matrix
tick_labels = ['negative', 'positive']
sns.heatmap(

c_matrix, square=True, annot=True, fmt='d', cbar=False,
xticklabels=tick_labels, yticklabels=tick_labels

)
plt.xlabel('True Label')
plt.ylabel('Predicted Label')
print()

9

Here we see that the classifier predicted 885 true negatives and 827 true positives. 152 false negatives
and 136 false positives were also predicted. To calculate the accuracy, we must divide the sum of
the matrix’s diagonal by the total sum of all elements in the matrix.

[33]: # calculate accuracy
sum(np.diagonal(c_matrix)) / np.sum(c_matrix)

[33]: 0.856

The accuracy of the classifier is thus 85.6%, which is quite a significant improvement from our
predictive baseline performance of 50% that simply guessed at random.

1.3.2 Summary and Conclusions

We have seen the effectiveness of using TF-IDF text representation in conjunction with the naive
Bayes algorithm to achieve generalization power in natural language processing. Using these meth-
ods, a business or its competitors would be able to analyze web-scaped data on certain products and
assess the customers’ opinions of them. This model would probably also perform at least decently
with any other text classification task, such as an email spam classifier.

When pre-processing text, tokenization via regular expressions, stemming, stopwords, and negation
handling were all used. It might be possible that performing lemmatization along with stemming
could reduce the complexity of the vocabulary further, so it may be worth exploring this idea.

The naive Bayes model could probably be improved with expanded features via n-grams. If you
remember, we were unable to use n-grams due to memory constraints. It would also be worth
comparing the naive Bayes model to methods such as logistic regression or support vector machine
(SVM). Logistic regression often performs well with a large dataset and sparse text representation;
while SVM - as pointed out here - is better at capturing the relationships between words as the
algorithm does not make the same assumption of conditional independence between features that
naive Bayes does make. By experimenting with n-grams and different algorithms, our result of
85.6% accuracy can likely be further improved.

These results should be reproducible using any programming environment; however, the ease with
which they are reproducible will vary depending on the programming language and libraries.
Python is a high-level interpreted language with a lot of processing overhead. If performance
is critical, a low-level compiled language such as C or C++ could be more appropriate despite
being more time-consuming to implement.

1.4 References
1. Kuncherichen, Sarath, Ebin, Neema. (2019). Sentiment Analysis in Product Reviews using

Natural Language Processing and Machine Learning. [URL]

2. Wamambo, Tinashe & Luca, Cristina & Fatima, Arooj. (2019). Use Case Prediction Using
Product Reviews Text Classification. 10.1007/978-3-030-33607-3_28. [URL]

3. Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting
of the Association for Computational Linguistics (ACL 2011). [URL]

4. Jurafsky, D. and J.H. Martin Speech and language processing. (2021; 3rd draft ed.). [URL]

10

https://stackoverflow.com/questions/35360081/naive-bayes-vs-svm-for-classifying-text-data
http://www.warse.org/IJISCS/static/pdf/file/ijiscs35822019.pdf
https://www.researchgate.net/publication/337078180_Use_Case_Prediction_Using_Product_Reviews_Text_Classification
https://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf
https://web.stanford.edu/~jurafsky/slp3

	Sentiment Analysis of Film Reviews
	Introduction
	Overview of Sentiment Analysis for Product and Service Reviews
	Objectives
	Dataset
	Evaluation Methodology

	Implementation
	Pre-Processing
	Baseline Performance
	Classification Approach

	Conclusions
	Evaluation
	Summary and Conclusions

	References

